| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istps | Structured version Visualization version GIF version | ||
| Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| istps.a | ⊢ 𝐴 = (Base‘𝐾) |
| istps.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
| Ref | Expression |
|---|---|
| istps | ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-topsp 22871 | . . 3 ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} | |
| 2 | 1 | eleq2i 2826 | . 2 ⊢ (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}) |
| 3 | topontop 22851 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top) | |
| 4 | 0ntop 22843 | . . . . . 6 ⊢ ¬ ∅ ∈ Top | |
| 5 | istps.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 6 | fvprc 6868 | . . . . . . . 8 ⊢ (¬ 𝐾 ∈ V → (TopOpen‘𝐾) = ∅) | |
| 7 | 5, 6 | eqtrid 2782 | . . . . . . 7 ⊢ (¬ 𝐾 ∈ V → 𝐽 = ∅) |
| 8 | 7 | eleq1d 2819 | . . . . . 6 ⊢ (¬ 𝐾 ∈ V → (𝐽 ∈ Top ↔ ∅ ∈ Top)) |
| 9 | 4, 8 | mtbiri 327 | . . . . 5 ⊢ (¬ 𝐾 ∈ V → ¬ 𝐽 ∈ Top) |
| 10 | 9 | con4i 114 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐾 ∈ V) |
| 11 | 3, 10 | syl 17 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V) |
| 12 | fveq2 6876 | . . . . 5 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾)) | |
| 13 | 12, 5 | eqtr4di 2788 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽) |
| 14 | fveq2 6876 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
| 15 | istps.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝐾) | |
| 16 | 14, 15 | eqtr4di 2788 | . . . . 5 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴) |
| 17 | 16 | fveq2d 6880 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴)) |
| 18 | 13, 17 | eleq12d 2828 | . . 3 ⊢ (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴))) |
| 19 | 11, 18 | elab3 3665 | . 2 ⊢ (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| 20 | 2, 19 | bitri 275 | 1 ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {cab 2713 Vcvv 3459 ∅c0 4308 ‘cfv 6531 Basecbs 17228 TopOpenctopn 17435 Topctop 22831 TopOnctopon 22848 TopSpctps 22870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-top 22832 df-topon 22849 df-topsp 22871 |
| This theorem is referenced by: istps2 22873 tpspropd 22876 tsettps 22879 indistps2ALT 22952 resstps 23125 prdstps 23567 imastps 23659 xpstopnlem2 23749 tmdtopon 24019 tgptopon 24020 istgp2 24029 oppgtmd 24035 distgp 24037 indistgp 24038 efmndtmd 24039 qustgplem 24059 prdstmdd 24062 eltsms 24071 tsmscls 24076 tsmsgsum 24077 tsmsid 24078 tsmsmhm 24084 tsmsadd 24085 dvrcn 24122 cnmpt1vsca 24132 cnmpt2vsca 24133 tlmtgp 24134 ressusp 24203 tustps 24211 ucncn 24223 neipcfilu 24234 cnextucn 24241 ucnextcn 24242 isxms2 24387 ressxms 24464 prdsxmslem2 24468 nrgtrg 24629 cnfldtopon 24721 cnmpt1ds 24782 cnmpt2ds 24783 nmcn 24784 cnmpt1ip 25199 cnmpt2ip 25200 csscld 25201 clsocv 25202 minveclem4a 25382 rspectps 33914 mhmhmeotmd 33958 rrxtopon 46317 qndenserrnopnlem 46326 |
| Copyright terms: Public domain | W3C validator |