| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istps | Structured version Visualization version GIF version | ||
| Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| istps.a | ⊢ 𝐴 = (Base‘𝐾) |
| istps.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
| Ref | Expression |
|---|---|
| istps | ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-topsp 22820 | . . 3 ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}) |
| 3 | topontop 22800 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top) | |
| 4 | 0ntop 22792 | . . . . . 6 ⊢ ¬ ∅ ∈ Top | |
| 5 | istps.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 6 | fvprc 6850 | . . . . . . . 8 ⊢ (¬ 𝐾 ∈ V → (TopOpen‘𝐾) = ∅) | |
| 7 | 5, 6 | eqtrid 2776 | . . . . . . 7 ⊢ (¬ 𝐾 ∈ V → 𝐽 = ∅) |
| 8 | 7 | eleq1d 2813 | . . . . . 6 ⊢ (¬ 𝐾 ∈ V → (𝐽 ∈ Top ↔ ∅ ∈ Top)) |
| 9 | 4, 8 | mtbiri 327 | . . . . 5 ⊢ (¬ 𝐾 ∈ V → ¬ 𝐽 ∈ Top) |
| 10 | 9 | con4i 114 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐾 ∈ V) |
| 11 | 3, 10 | syl 17 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V) |
| 12 | fveq2 6858 | . . . . 5 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾)) | |
| 13 | 12, 5 | eqtr4di 2782 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽) |
| 14 | fveq2 6858 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
| 15 | istps.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝐾) | |
| 16 | 14, 15 | eqtr4di 2782 | . . . . 5 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴) |
| 17 | 16 | fveq2d 6862 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴)) |
| 18 | 13, 17 | eleq12d 2822 | . . 3 ⊢ (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴))) |
| 19 | 11, 18 | elab3 3653 | . 2 ⊢ (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| 20 | 2, 19 | bitri 275 | 1 ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3447 ∅c0 4296 ‘cfv 6511 Basecbs 17179 TopOpenctopn 17384 Topctop 22780 TopOnctopon 22797 TopSpctps 22819 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-top 22781 df-topon 22798 df-topsp 22820 |
| This theorem is referenced by: istps2 22822 tpspropd 22825 tsettps 22828 indistps2ALT 22901 resstps 23074 prdstps 23516 imastps 23608 xpstopnlem2 23698 tmdtopon 23968 tgptopon 23969 istgp2 23978 oppgtmd 23984 distgp 23986 indistgp 23987 efmndtmd 23988 qustgplem 24008 prdstmdd 24011 eltsms 24020 tsmscls 24025 tsmsgsum 24026 tsmsid 24027 tsmsmhm 24033 tsmsadd 24034 dvrcn 24071 cnmpt1vsca 24081 cnmpt2vsca 24082 tlmtgp 24083 ressusp 24152 tustps 24160 ucncn 24172 neipcfilu 24183 cnextucn 24190 ucnextcn 24191 isxms2 24336 ressxms 24413 prdsxmslem2 24417 nrgtrg 24578 cnfldtopon 24670 cnmpt1ds 24731 cnmpt2ds 24732 nmcn 24733 cnmpt1ip 25147 cnmpt2ip 25148 csscld 25149 clsocv 25150 minveclem4a 25330 rspectps 33873 mhmhmeotmd 33917 rrxtopon 46286 qndenserrnopnlem 46295 |
| Copyright terms: Public domain | W3C validator |