MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istps Structured version   Visualization version   GIF version

Theorem istps 22828
Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
istps.a 𝐴 = (Base‘𝐾)
istps.j 𝐽 = (TopOpen‘𝐾)
Assertion
Ref Expression
istps (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))

Proof of Theorem istps
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-topsp 22827 . . 3 TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}
21eleq2i 2821 . 2 (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))})
3 topontop 22807 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top)
4 0ntop 22799 . . . . . 6 ¬ ∅ ∈ Top
5 istps.j . . . . . . . 8 𝐽 = (TopOpen‘𝐾)
6 fvprc 6853 . . . . . . . 8 𝐾 ∈ V → (TopOpen‘𝐾) = ∅)
75, 6eqtrid 2777 . . . . . . 7 𝐾 ∈ V → 𝐽 = ∅)
87eleq1d 2814 . . . . . 6 𝐾 ∈ V → (𝐽 ∈ Top ↔ ∅ ∈ Top))
94, 8mtbiri 327 . . . . 5 𝐾 ∈ V → ¬ 𝐽 ∈ Top)
109con4i 114 . . . 4 (𝐽 ∈ Top → 𝐾 ∈ V)
113, 10syl 17 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V)
12 fveq2 6861 . . . . 5 (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾))
1312, 5eqtr4di 2783 . . . 4 (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽)
14 fveq2 6861 . . . . . 6 (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾))
15 istps.a . . . . . 6 𝐴 = (Base‘𝐾)
1614, 15eqtr4di 2783 . . . . 5 (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴)
1716fveq2d 6865 . . . 4 (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴))
1813, 17eleq12d 2823 . . 3 (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴)))
1911, 18elab3 3656 . 2 (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴))
202, 19bitri 275 1 (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  {cab 2708  Vcvv 3450  c0 4299  cfv 6514  Basecbs 17186  TopOpenctopn 17391  Topctop 22787  TopOnctopon 22804  TopSpctps 22826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-top 22788  df-topon 22805  df-topsp 22827
This theorem is referenced by:  istps2  22829  tpspropd  22832  tsettps  22835  indistps2ALT  22908  resstps  23081  prdstps  23523  imastps  23615  xpstopnlem2  23705  tmdtopon  23975  tgptopon  23976  istgp2  23985  oppgtmd  23991  distgp  23993  indistgp  23994  efmndtmd  23995  qustgplem  24015  prdstmdd  24018  eltsms  24027  tsmscls  24032  tsmsgsum  24033  tsmsid  24034  tsmsmhm  24040  tsmsadd  24041  dvrcn  24078  cnmpt1vsca  24088  cnmpt2vsca  24089  tlmtgp  24090  ressusp  24159  tustps  24167  ucncn  24179  neipcfilu  24190  cnextucn  24197  ucnextcn  24198  isxms2  24343  ressxms  24420  prdsxmslem2  24424  nrgtrg  24585  cnfldtopon  24677  cnmpt1ds  24738  cnmpt2ds  24739  nmcn  24740  cnmpt1ip  25154  cnmpt2ip  25155  csscld  25156  clsocv  25157  minveclem4a  25337  rspectps  33880  mhmhmeotmd  33924  rrxtopon  46293  qndenserrnopnlem  46302
  Copyright terms: Public domain W3C validator