![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istps | Structured version Visualization version GIF version |
Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
istps.a | ⊢ 𝐴 = (Base‘𝐾) |
istps.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
Ref | Expression |
---|---|
istps | ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-topsp 22426 | . . 3 ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} | |
2 | 1 | eleq2i 2825 | . 2 ⊢ (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}) |
3 | topontop 22406 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top) | |
4 | 0ntop 22398 | . . . . . 6 ⊢ ¬ ∅ ∈ Top | |
5 | istps.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐾) | |
6 | fvprc 6880 | . . . . . . . 8 ⊢ (¬ 𝐾 ∈ V → (TopOpen‘𝐾) = ∅) | |
7 | 5, 6 | eqtrid 2784 | . . . . . . 7 ⊢ (¬ 𝐾 ∈ V → 𝐽 = ∅) |
8 | 7 | eleq1d 2818 | . . . . . 6 ⊢ (¬ 𝐾 ∈ V → (𝐽 ∈ Top ↔ ∅ ∈ Top)) |
9 | 4, 8 | mtbiri 326 | . . . . 5 ⊢ (¬ 𝐾 ∈ V → ¬ 𝐽 ∈ Top) |
10 | 9 | con4i 114 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐾 ∈ V) |
11 | 3, 10 | syl 17 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V) |
12 | fveq2 6888 | . . . . 5 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾)) | |
13 | 12, 5 | eqtr4di 2790 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽) |
14 | fveq2 6888 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
15 | istps.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝐾) | |
16 | 14, 15 | eqtr4di 2790 | . . . . 5 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴) |
17 | 16 | fveq2d 6892 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴)) |
18 | 13, 17 | eleq12d 2827 | . . 3 ⊢ (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴))) |
19 | 11, 18 | elab3 3675 | . 2 ⊢ (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴)) |
20 | 2, 19 | bitri 274 | 1 ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1541 ∈ wcel 2106 {cab 2709 Vcvv 3474 ∅c0 4321 ‘cfv 6540 Basecbs 17140 TopOpenctopn 17363 Topctop 22386 TopOnctopon 22403 TopSpctps 22425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-top 22387 df-topon 22404 df-topsp 22426 |
This theorem is referenced by: istps2 22428 tpspropd 22431 tsettps 22434 indistps2ALT 22509 resstps 22682 prdstps 23124 imastps 23216 xpstopnlem2 23306 tmdtopon 23576 tgptopon 23577 istgp2 23586 oppgtmd 23592 distgp 23594 indistgp 23595 efmndtmd 23596 qustgplem 23616 prdstmdd 23619 eltsms 23628 tsmscls 23633 tsmsgsum 23634 tsmsid 23635 tsmsmhm 23641 tsmsadd 23642 dvrcn 23679 cnmpt1vsca 23689 cnmpt2vsca 23690 tlmtgp 23691 ressusp 23760 tustps 23769 ucncn 23781 neipcfilu 23792 cnextucn 23799 ucnextcn 23800 isxms2 23945 ressxms 24025 prdsxmslem2 24029 nrgtrg 24198 cnfldtopon 24290 cnmpt1ds 24349 cnmpt2ds 24350 nmcn 24351 cnmpt1ip 24755 cnmpt2ip 24756 csscld 24757 clsocv 24758 minveclem4a 24938 rspectps 32851 mhmhmeotmd 32895 rrxtopon 44990 qndenserrnopnlem 44999 |
Copyright terms: Public domain | W3C validator |