| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istps | Structured version Visualization version GIF version | ||
| Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| istps.a | ⊢ 𝐴 = (Base‘𝐾) |
| istps.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
| Ref | Expression |
|---|---|
| istps | ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-topsp 22836 | . . 3 ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}) |
| 3 | topontop 22816 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top) | |
| 4 | 0ntop 22808 | . . . . . 6 ⊢ ¬ ∅ ∈ Top | |
| 5 | istps.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 6 | fvprc 6818 | . . . . . . . 8 ⊢ (¬ 𝐾 ∈ V → (TopOpen‘𝐾) = ∅) | |
| 7 | 5, 6 | eqtrid 2776 | . . . . . . 7 ⊢ (¬ 𝐾 ∈ V → 𝐽 = ∅) |
| 8 | 7 | eleq1d 2813 | . . . . . 6 ⊢ (¬ 𝐾 ∈ V → (𝐽 ∈ Top ↔ ∅ ∈ Top)) |
| 9 | 4, 8 | mtbiri 327 | . . . . 5 ⊢ (¬ 𝐾 ∈ V → ¬ 𝐽 ∈ Top) |
| 10 | 9 | con4i 114 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐾 ∈ V) |
| 11 | 3, 10 | syl 17 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V) |
| 12 | fveq2 6826 | . . . . 5 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾)) | |
| 13 | 12, 5 | eqtr4di 2782 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽) |
| 14 | fveq2 6826 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
| 15 | istps.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝐾) | |
| 16 | 14, 15 | eqtr4di 2782 | . . . . 5 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴) |
| 17 | 16 | fveq2d 6830 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴)) |
| 18 | 13, 17 | eleq12d 2822 | . . 3 ⊢ (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴))) |
| 19 | 11, 18 | elab3 3644 | . 2 ⊢ (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| 20 | 2, 19 | bitri 275 | 1 ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3438 ∅c0 4286 ‘cfv 6486 Basecbs 17138 TopOpenctopn 17343 Topctop 22796 TopOnctopon 22813 TopSpctps 22835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-top 22797 df-topon 22814 df-topsp 22836 |
| This theorem is referenced by: istps2 22838 tpspropd 22841 tsettps 22844 indistps2ALT 22917 resstps 23090 prdstps 23532 imastps 23624 xpstopnlem2 23714 tmdtopon 23984 tgptopon 23985 istgp2 23994 oppgtmd 24000 distgp 24002 indistgp 24003 efmndtmd 24004 qustgplem 24024 prdstmdd 24027 eltsms 24036 tsmscls 24041 tsmsgsum 24042 tsmsid 24043 tsmsmhm 24049 tsmsadd 24050 dvrcn 24087 cnmpt1vsca 24097 cnmpt2vsca 24098 tlmtgp 24099 ressusp 24168 tustps 24176 ucncn 24188 neipcfilu 24199 cnextucn 24206 ucnextcn 24207 isxms2 24352 ressxms 24429 prdsxmslem2 24433 nrgtrg 24594 cnfldtopon 24686 cnmpt1ds 24747 cnmpt2ds 24748 nmcn 24749 cnmpt1ip 25163 cnmpt2ip 25164 csscld 25165 clsocv 25166 minveclem4a 25346 rspectps 33849 mhmhmeotmd 33893 rrxtopon 46270 qndenserrnopnlem 46279 |
| Copyright terms: Public domain | W3C validator |