| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istps | Structured version Visualization version GIF version | ||
| Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| istps.a | ⊢ 𝐴 = (Base‘𝐾) |
| istps.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
| Ref | Expression |
|---|---|
| istps | ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-topsp 22888 | . . 3 ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} | |
| 2 | 1 | eleq2i 2825 | . 2 ⊢ (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}) |
| 3 | topontop 22868 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top) | |
| 4 | 0ntop 22860 | . . . . . 6 ⊢ ¬ ∅ ∈ Top | |
| 5 | istps.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 6 | fvprc 6878 | . . . . . . . 8 ⊢ (¬ 𝐾 ∈ V → (TopOpen‘𝐾) = ∅) | |
| 7 | 5, 6 | eqtrid 2781 | . . . . . . 7 ⊢ (¬ 𝐾 ∈ V → 𝐽 = ∅) |
| 8 | 7 | eleq1d 2818 | . . . . . 6 ⊢ (¬ 𝐾 ∈ V → (𝐽 ∈ Top ↔ ∅ ∈ Top)) |
| 9 | 4, 8 | mtbiri 327 | . . . . 5 ⊢ (¬ 𝐾 ∈ V → ¬ 𝐽 ∈ Top) |
| 10 | 9 | con4i 114 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐾 ∈ V) |
| 11 | 3, 10 | syl 17 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V) |
| 12 | fveq2 6886 | . . . . 5 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾)) | |
| 13 | 12, 5 | eqtr4di 2787 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽) |
| 14 | fveq2 6886 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
| 15 | istps.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝐾) | |
| 16 | 14, 15 | eqtr4di 2787 | . . . . 5 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴) |
| 17 | 16 | fveq2d 6890 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴)) |
| 18 | 13, 17 | eleq12d 2827 | . . 3 ⊢ (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴))) |
| 19 | 11, 18 | elab3 3669 | . 2 ⊢ (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| 20 | 2, 19 | bitri 275 | 1 ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1539 ∈ wcel 2107 {cab 2712 Vcvv 3463 ∅c0 4313 ‘cfv 6541 Basecbs 17230 TopOpenctopn 17438 Topctop 22848 TopOnctopon 22865 TopSpctps 22887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-top 22849 df-topon 22866 df-topsp 22888 |
| This theorem is referenced by: istps2 22890 tpspropd 22893 tsettps 22896 indistps2ALT 22969 resstps 23142 prdstps 23584 imastps 23676 xpstopnlem2 23766 tmdtopon 24036 tgptopon 24037 istgp2 24046 oppgtmd 24052 distgp 24054 indistgp 24055 efmndtmd 24056 qustgplem 24076 prdstmdd 24079 eltsms 24088 tsmscls 24093 tsmsgsum 24094 tsmsid 24095 tsmsmhm 24101 tsmsadd 24102 dvrcn 24139 cnmpt1vsca 24149 cnmpt2vsca 24150 tlmtgp 24151 ressusp 24220 tustps 24228 ucncn 24240 neipcfilu 24251 cnextucn 24258 ucnextcn 24259 isxms2 24404 ressxms 24483 prdsxmslem2 24487 nrgtrg 24648 cnfldtopon 24740 cnmpt1ds 24801 cnmpt2ds 24802 nmcn 24803 cnmpt1ip 25218 cnmpt2ip 25219 csscld 25220 clsocv 25221 minveclem4a 25401 rspectps 33857 mhmhmeotmd 33901 rrxtopon 46275 qndenserrnopnlem 46284 |
| Copyright terms: Public domain | W3C validator |