![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istps | Structured version Visualization version GIF version |
Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
istps.a | ⊢ 𝐴 = (Base‘𝐾) |
istps.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
Ref | Expression |
---|---|
istps | ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-topsp 22955 | . . 3 ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} | |
2 | 1 | eleq2i 2831 | . 2 ⊢ (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}) |
3 | topontop 22935 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top) | |
4 | 0ntop 22927 | . . . . . 6 ⊢ ¬ ∅ ∈ Top | |
5 | istps.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐾) | |
6 | fvprc 6899 | . . . . . . . 8 ⊢ (¬ 𝐾 ∈ V → (TopOpen‘𝐾) = ∅) | |
7 | 5, 6 | eqtrid 2787 | . . . . . . 7 ⊢ (¬ 𝐾 ∈ V → 𝐽 = ∅) |
8 | 7 | eleq1d 2824 | . . . . . 6 ⊢ (¬ 𝐾 ∈ V → (𝐽 ∈ Top ↔ ∅ ∈ Top)) |
9 | 4, 8 | mtbiri 327 | . . . . 5 ⊢ (¬ 𝐾 ∈ V → ¬ 𝐽 ∈ Top) |
10 | 9 | con4i 114 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐾 ∈ V) |
11 | 3, 10 | syl 17 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V) |
12 | fveq2 6907 | . . . . 5 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾)) | |
13 | 12, 5 | eqtr4di 2793 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽) |
14 | fveq2 6907 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
15 | istps.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝐾) | |
16 | 14, 15 | eqtr4di 2793 | . . . . 5 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴) |
17 | 16 | fveq2d 6911 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴)) |
18 | 13, 17 | eleq12d 2833 | . . 3 ⊢ (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴))) |
19 | 11, 18 | elab3 3689 | . 2 ⊢ (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴)) |
20 | 2, 19 | bitri 275 | 1 ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ∈ wcel 2106 {cab 2712 Vcvv 3478 ∅c0 4339 ‘cfv 6563 Basecbs 17245 TopOpenctopn 17468 Topctop 22915 TopOnctopon 22932 TopSpctps 22954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-top 22916 df-topon 22933 df-topsp 22955 |
This theorem is referenced by: istps2 22957 tpspropd 22960 tsettps 22963 indistps2ALT 23038 resstps 23211 prdstps 23653 imastps 23745 xpstopnlem2 23835 tmdtopon 24105 tgptopon 24106 istgp2 24115 oppgtmd 24121 distgp 24123 indistgp 24124 efmndtmd 24125 qustgplem 24145 prdstmdd 24148 eltsms 24157 tsmscls 24162 tsmsgsum 24163 tsmsid 24164 tsmsmhm 24170 tsmsadd 24171 dvrcn 24208 cnmpt1vsca 24218 cnmpt2vsca 24219 tlmtgp 24220 ressusp 24289 tustps 24298 ucncn 24310 neipcfilu 24321 cnextucn 24328 ucnextcn 24329 isxms2 24474 ressxms 24554 prdsxmslem2 24558 nrgtrg 24727 cnfldtopon 24819 cnmpt1ds 24878 cnmpt2ds 24879 nmcn 24880 cnmpt1ip 25295 cnmpt2ip 25296 csscld 25297 clsocv 25298 minveclem4a 25478 rspectps 33844 mhmhmeotmd 33888 rrxtopon 46244 qndenserrnopnlem 46253 |
Copyright terms: Public domain | W3C validator |