![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istps | Structured version Visualization version GIF version |
Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
istps.a | ⊢ 𝐴 = (Base‘𝐾) |
istps.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
Ref | Expression |
---|---|
istps | ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-topsp 22960 | . . 3 ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} | |
2 | 1 | eleq2i 2836 | . 2 ⊢ (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}) |
3 | topontop 22940 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top) | |
4 | 0ntop 22932 | . . . . . 6 ⊢ ¬ ∅ ∈ Top | |
5 | istps.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐾) | |
6 | fvprc 6912 | . . . . . . . 8 ⊢ (¬ 𝐾 ∈ V → (TopOpen‘𝐾) = ∅) | |
7 | 5, 6 | eqtrid 2792 | . . . . . . 7 ⊢ (¬ 𝐾 ∈ V → 𝐽 = ∅) |
8 | 7 | eleq1d 2829 | . . . . . 6 ⊢ (¬ 𝐾 ∈ V → (𝐽 ∈ Top ↔ ∅ ∈ Top)) |
9 | 4, 8 | mtbiri 327 | . . . . 5 ⊢ (¬ 𝐾 ∈ V → ¬ 𝐽 ∈ Top) |
10 | 9 | con4i 114 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐾 ∈ V) |
11 | 3, 10 | syl 17 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V) |
12 | fveq2 6920 | . . . . 5 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾)) | |
13 | 12, 5 | eqtr4di 2798 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽) |
14 | fveq2 6920 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
15 | istps.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝐾) | |
16 | 14, 15 | eqtr4di 2798 | . . . . 5 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴) |
17 | 16 | fveq2d 6924 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴)) |
18 | 13, 17 | eleq12d 2838 | . . 3 ⊢ (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴))) |
19 | 11, 18 | elab3 3702 | . 2 ⊢ (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴)) |
20 | 2, 19 | bitri 275 | 1 ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cab 2717 Vcvv 3488 ∅c0 4352 ‘cfv 6573 Basecbs 17258 TopOpenctopn 17481 Topctop 22920 TopOnctopon 22937 TopSpctps 22959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-top 22921 df-topon 22938 df-topsp 22960 |
This theorem is referenced by: istps2 22962 tpspropd 22965 tsettps 22968 indistps2ALT 23043 resstps 23216 prdstps 23658 imastps 23750 xpstopnlem2 23840 tmdtopon 24110 tgptopon 24111 istgp2 24120 oppgtmd 24126 distgp 24128 indistgp 24129 efmndtmd 24130 qustgplem 24150 prdstmdd 24153 eltsms 24162 tsmscls 24167 tsmsgsum 24168 tsmsid 24169 tsmsmhm 24175 tsmsadd 24176 dvrcn 24213 cnmpt1vsca 24223 cnmpt2vsca 24224 tlmtgp 24225 ressusp 24294 tustps 24303 ucncn 24315 neipcfilu 24326 cnextucn 24333 ucnextcn 24334 isxms2 24479 ressxms 24559 prdsxmslem2 24563 nrgtrg 24732 cnfldtopon 24824 cnmpt1ds 24883 cnmpt2ds 24884 nmcn 24885 cnmpt1ip 25300 cnmpt2ip 25301 csscld 25302 clsocv 25303 minveclem4a 25483 rspectps 33829 mhmhmeotmd 33873 rrxtopon 46209 qndenserrnopnlem 46218 |
Copyright terms: Public domain | W3C validator |