| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istps | Structured version Visualization version GIF version | ||
| Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| istps.a | ⊢ 𝐴 = (Base‘𝐾) |
| istps.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
| Ref | Expression |
|---|---|
| istps | ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-topsp 22827 | . . 3 ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} | |
| 2 | 1 | eleq2i 2821 | . 2 ⊢ (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}) |
| 3 | topontop 22807 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top) | |
| 4 | 0ntop 22799 | . . . . . 6 ⊢ ¬ ∅ ∈ Top | |
| 5 | istps.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 6 | fvprc 6853 | . . . . . . . 8 ⊢ (¬ 𝐾 ∈ V → (TopOpen‘𝐾) = ∅) | |
| 7 | 5, 6 | eqtrid 2777 | . . . . . . 7 ⊢ (¬ 𝐾 ∈ V → 𝐽 = ∅) |
| 8 | 7 | eleq1d 2814 | . . . . . 6 ⊢ (¬ 𝐾 ∈ V → (𝐽 ∈ Top ↔ ∅ ∈ Top)) |
| 9 | 4, 8 | mtbiri 327 | . . . . 5 ⊢ (¬ 𝐾 ∈ V → ¬ 𝐽 ∈ Top) |
| 10 | 9 | con4i 114 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐾 ∈ V) |
| 11 | 3, 10 | syl 17 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V) |
| 12 | fveq2 6861 | . . . . 5 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾)) | |
| 13 | 12, 5 | eqtr4di 2783 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽) |
| 14 | fveq2 6861 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
| 15 | istps.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝐾) | |
| 16 | 14, 15 | eqtr4di 2783 | . . . . 5 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴) |
| 17 | 16 | fveq2d 6865 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴)) |
| 18 | 13, 17 | eleq12d 2823 | . . 3 ⊢ (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴))) |
| 19 | 11, 18 | elab3 3656 | . 2 ⊢ (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| 20 | 2, 19 | bitri 275 | 1 ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2708 Vcvv 3450 ∅c0 4299 ‘cfv 6514 Basecbs 17186 TopOpenctopn 17391 Topctop 22787 TopOnctopon 22804 TopSpctps 22826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-top 22788 df-topon 22805 df-topsp 22827 |
| This theorem is referenced by: istps2 22829 tpspropd 22832 tsettps 22835 indistps2ALT 22908 resstps 23081 prdstps 23523 imastps 23615 xpstopnlem2 23705 tmdtopon 23975 tgptopon 23976 istgp2 23985 oppgtmd 23991 distgp 23993 indistgp 23994 efmndtmd 23995 qustgplem 24015 prdstmdd 24018 eltsms 24027 tsmscls 24032 tsmsgsum 24033 tsmsid 24034 tsmsmhm 24040 tsmsadd 24041 dvrcn 24078 cnmpt1vsca 24088 cnmpt2vsca 24089 tlmtgp 24090 ressusp 24159 tustps 24167 ucncn 24179 neipcfilu 24190 cnextucn 24197 ucnextcn 24198 isxms2 24343 ressxms 24420 prdsxmslem2 24424 nrgtrg 24585 cnfldtopon 24677 cnmpt1ds 24738 cnmpt2ds 24739 nmcn 24740 cnmpt1ip 25154 cnmpt2ip 25155 csscld 25156 clsocv 25157 minveclem4a 25337 rspectps 33880 mhmhmeotmd 33924 rrxtopon 46293 qndenserrnopnlem 46302 |
| Copyright terms: Public domain | W3C validator |