MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istps Structured version   Visualization version   GIF version

Theorem istps 21108
Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
istps.a 𝐴 = (Base‘𝐾)
istps.j 𝐽 = (TopOpen‘𝐾)
Assertion
Ref Expression
istps (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))

Proof of Theorem istps
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df-topsp 21107 . . 3 TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}
21eleq2i 2897 . 2 (𝐾 ∈ TopSp ↔ 𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))})
3 topontop 21087 . . . 4 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ Top)
4 0ntop 21079 . . . . . 6 ¬ ∅ ∈ Top
5 istps.j . . . . . . . 8 𝐽 = (TopOpen‘𝐾)
6 fvprc 6425 . . . . . . . 8 𝐾 ∈ V → (TopOpen‘𝐾) = ∅)
75, 6syl5eq 2872 . . . . . . 7 𝐾 ∈ V → 𝐽 = ∅)
87eleq1d 2890 . . . . . 6 𝐾 ∈ V → (𝐽 ∈ Top ↔ ∅ ∈ Top))
94, 8mtbiri 319 . . . . 5 𝐾 ∈ V → ¬ 𝐽 ∈ Top)
109con4i 114 . . . 4 (𝐽 ∈ Top → 𝐾 ∈ V)
113, 10syl 17 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ V)
12 fveq2 6432 . . . . 5 (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾))
1312, 5syl6eqr 2878 . . . 4 (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽)
14 fveq2 6432 . . . . . 6 (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾))
15 istps.a . . . . . 6 𝐴 = (Base‘𝐾)
1614, 15syl6eqr 2878 . . . . 5 (𝑓 = 𝐾 → (Base‘𝑓) = 𝐴)
1716fveq2d 6436 . . . 4 (𝑓 = 𝐾 → (TopOn‘(Base‘𝑓)) = (TopOn‘𝐴))
1813, 17eleq12d 2899 . . 3 (𝑓 = 𝐾 → ((TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓)) ↔ 𝐽 ∈ (TopOn‘𝐴)))
1911, 18elab3 3578 . 2 (𝐾 ∈ {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} ↔ 𝐽 ∈ (TopOn‘𝐴))
202, 19bitri 267 1 (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 198   = wceq 1658  wcel 2166  {cab 2810  Vcvv 3413  c0 4143  cfv 6122  Basecbs 16221  TopOpenctopn 16434  Topctop 21067  TopOnctopon 21084  TopSpctps 21106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ral 3121  df-rex 3122  df-rab 3125  df-v 3415  df-sbc 3662  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-iota 6085  df-fun 6124  df-fv 6130  df-top 21068  df-topon 21085  df-topsp 21107
This theorem is referenced by:  istps2  21109  tpspropd  21112  tsettps  21115  indistps2ALT  21188  resstps  21361  prdstps  21802  imastps  21894  xpstopnlem2  21984  tmdtopon  22254  tgptopon  22255  istgp2  22264  oppgtmd  22270  distgp  22272  indistgp  22273  symgtgp  22274  qustgplem  22293  prdstmdd  22296  eltsms  22305  tsmscls  22310  tsmsgsum  22311  tsmsid  22312  tsmsmhm  22318  tsmsadd  22319  dvrcn  22356  cnmpt1vsca  22366  cnmpt2vsca  22367  tlmtgp  22368  ressusp  22438  tustps  22446  ucncn  22458  neipcfilu  22469  cnextucn  22476  ucnextcn  22477  isxms2  22622  ressxms  22699  prdsxmslem2  22703  nrgtrg  22863  cnfldtopon  22955  cnmpt1ds  23014  cnmpt2ds  23015  nmcn  23016  cnmpt1ip  23414  cnmpt2ip  23415  csscld  23416  clsocv  23417  minveclem4a  23597  mhmhmeotmd  30517  rrxtopon  41298  qndenserrnopnlem  41307
  Copyright terms: Public domain W3C validator