Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0opn | Structured version Visualization version GIF version |
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
Ref | Expression |
---|---|
0opn | ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uni0 4882 | . 2 ⊢ ∪ ∅ = ∅ | |
2 | 0ss 4342 | . . 3 ⊢ ∅ ⊆ 𝐽 | |
3 | uniopn 22144 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∪ ∅ ∈ 𝐽) | |
4 | 2, 3 | mpan2 688 | . 2 ⊢ (𝐽 ∈ Top → ∪ ∅ ∈ 𝐽) |
5 | 1, 4 | eqeltrrid 2842 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ⊆ wss 3897 ∅c0 4268 ∪ cuni 4851 Topctop 22140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-ext 2707 ax-sep 5240 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-in 3904 df-ss 3914 df-nul 4269 df-pw 4548 df-sn 4573 df-uni 4852 df-top 22141 |
This theorem is referenced by: 0ntop 22152 topgele 22177 tgclb 22218 0top 22231 en1top 22232 en2top 22233 topcld 22284 clsval2 22299 ntr0 22330 opnnei 22369 0nei 22377 restrcl 22406 rest0 22418 ordtrest2lem 22452 iocpnfordt 22464 icomnfordt 22465 cnindis 22541 isconn2 22663 kqtop 22994 mopn0 23752 locfinref 32030 ordtrest2NEWlem 32111 sxbrsigalem3 32480 cnambfre 35923 |
Copyright terms: Public domain | W3C validator |