![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0opn | Structured version Visualization version GIF version |
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
Ref | Expression |
---|---|
0opn | ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uni0 4940 | . 2 ⊢ ∪ ∅ = ∅ | |
2 | 0ss 4406 | . . 3 ⊢ ∅ ⊆ 𝐽 | |
3 | uniopn 22919 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∪ ∅ ∈ 𝐽) | |
4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐽 ∈ Top → ∪ ∅ ∈ 𝐽) |
5 | 1, 4 | eqeltrrid 2844 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3963 ∅c0 4339 ∪ cuni 4912 Topctop 22915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-11 2155 ax-ext 2706 ax-sep 5302 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-in 3970 df-ss 3980 df-nul 4340 df-pw 4607 df-sn 4632 df-uni 4913 df-top 22916 |
This theorem is referenced by: 0ntop 22927 topgele 22952 tgclb 22993 0top 23006 en1top 23007 en2top 23008 topcld 23059 clsval2 23074 ntr0 23105 opnnei 23144 0nei 23152 restrcl 23181 rest0 23193 ordtrest2lem 23227 iocpnfordt 23239 icomnfordt 23240 cnindis 23316 isconn2 23438 kqtop 23769 mopn0 24527 locfinref 33802 ordtrest2NEWlem 33883 sxbrsigalem3 34254 cnambfre 37655 |
Copyright terms: Public domain | W3C validator |