MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0opn Structured version   Visualization version   GIF version

Theorem 0opn 22911
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
Assertion
Ref Expression
0opn (𝐽 ∈ Top → ∅ ∈ 𝐽)

Proof of Theorem 0opn
StepHypRef Expression
1 uni0 4934 . 2 ∅ = ∅
2 0ss 4399 . . 3 ∅ ⊆ 𝐽
3 uniopn 22904 . . 3 ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∅ ∈ 𝐽)
42, 3mpan2 691 . 2 (𝐽 ∈ Top → ∅ ∈ 𝐽)
51, 4eqeltrrid 2845 1 (𝐽 ∈ Top → ∅ ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wss 3950  c0 4332   cuni 4906  Topctop 22900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-11 2156  ax-ext 2707  ax-sep 5295
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-in 3957  df-ss 3967  df-nul 4333  df-pw 4601  df-sn 4626  df-uni 4907  df-top 22901
This theorem is referenced by:  0ntop  22912  topgele  22937  tgclb  22978  0top  22991  en1top  22992  en2top  22993  topcld  23044  clsval2  23059  ntr0  23090  opnnei  23129  0nei  23137  restrcl  23166  rest0  23178  ordtrest2lem  23212  iocpnfordt  23224  icomnfordt  23225  cnindis  23301  isconn2  23423  kqtop  23754  mopn0  24512  locfinref  33841  ordtrest2NEWlem  33922  sxbrsigalem3  34275  cnambfre  37676
  Copyright terms: Public domain W3C validator