MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0opn Structured version   Visualization version   GIF version

Theorem 0opn 22807
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
Assertion
Ref Expression
0opn (𝐽 ∈ Top → ∅ ∈ 𝐽)

Proof of Theorem 0opn
StepHypRef Expression
1 uni0 4889 . 2 ∅ = ∅
2 0ss 4353 . . 3 ∅ ⊆ 𝐽
3 uniopn 22800 . . 3 ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∅ ∈ 𝐽)
42, 3mpan2 691 . 2 (𝐽 ∈ Top → ∅ ∈ 𝐽)
51, 4eqeltrrid 2833 1 (𝐽 ∈ Top → ∅ ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3905  c0 4286   cuni 4861  Topctop 22796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5238
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-in 3912  df-ss 3922  df-nul 4287  df-pw 4555  df-sn 4580  df-uni 4862  df-top 22797
This theorem is referenced by:  0ntop  22808  topgele  22833  tgclb  22873  0top  22886  en1top  22887  en2top  22888  topcld  22938  clsval2  22953  ntr0  22984  opnnei  23023  0nei  23031  restrcl  23060  rest0  23072  ordtrest2lem  23106  iocpnfordt  23118  icomnfordt  23119  cnindis  23195  isconn2  23317  kqtop  23648  mopn0  24402  locfinref  33810  ordtrest2NEWlem  33891  sxbrsigalem3  34242  cnambfre  37650
  Copyright terms: Public domain W3C validator