| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0opn | Structured version Visualization version GIF version | ||
| Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
| Ref | Expression |
|---|---|
| 0opn | ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uni0 4916 | . 2 ⊢ ∪ ∅ = ∅ | |
| 2 | 0ss 4380 | . . 3 ⊢ ∅ ⊆ 𝐽 | |
| 3 | uniopn 22840 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∪ ∅ ∈ 𝐽) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐽 ∈ Top → ∪ ∅ ∈ 𝐽) |
| 5 | 1, 4 | eqeltrrid 2840 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3931 ∅c0 4313 ∪ cuni 4888 Topctop 22836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2708 ax-sep 5271 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-in 3938 df-ss 3948 df-nul 4314 df-pw 4582 df-sn 4607 df-uni 4889 df-top 22837 |
| This theorem is referenced by: 0ntop 22848 topgele 22873 tgclb 22913 0top 22926 en1top 22927 en2top 22928 topcld 22978 clsval2 22993 ntr0 23024 opnnei 23063 0nei 23071 restrcl 23100 rest0 23112 ordtrest2lem 23146 iocpnfordt 23158 icomnfordt 23159 cnindis 23235 isconn2 23357 kqtop 23688 mopn0 24442 locfinref 33877 ordtrest2NEWlem 33958 sxbrsigalem3 34309 cnambfre 37697 |
| Copyright terms: Public domain | W3C validator |