MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0opn Structured version   Visualization version   GIF version

Theorem 0opn 22820
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
Assertion
Ref Expression
0opn (𝐽 ∈ Top → ∅ ∈ 𝐽)

Proof of Theorem 0opn
StepHypRef Expression
1 uni0 4887 . 2 ∅ = ∅
2 0ss 4350 . . 3 ∅ ⊆ 𝐽
3 uniopn 22813 . . 3 ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∅ ∈ 𝐽)
42, 3mpan2 691 . 2 (𝐽 ∈ Top → ∅ ∈ 𝐽)
51, 4eqeltrrid 2836 1 (𝐽 ∈ Top → ∅ ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wss 3902  c0 4283   cuni 4859  Topctop 22809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5234
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-in 3909  df-ss 3919  df-nul 4284  df-pw 4552  df-sn 4577  df-uni 4860  df-top 22810
This theorem is referenced by:  0ntop  22821  topgele  22846  tgclb  22886  0top  22899  en1top  22900  en2top  22901  topcld  22951  clsval2  22966  ntr0  22997  opnnei  23036  0nei  23044  restrcl  23073  rest0  23085  ordtrest2lem  23119  iocpnfordt  23131  icomnfordt  23132  cnindis  23208  isconn2  23330  kqtop  23661  mopn0  24414  locfinref  33852  ordtrest2NEWlem  33933  sxbrsigalem3  34283  cnambfre  37714
  Copyright terms: Public domain W3C validator