Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0opn | Structured version Visualization version GIF version |
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
Ref | Expression |
---|---|
0opn | ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uni0 4866 | . 2 ⊢ ∪ ∅ = ∅ | |
2 | 0ss 4327 | . . 3 ⊢ ∅ ⊆ 𝐽 | |
3 | uniopn 21954 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∪ ∅ ∈ 𝐽) | |
4 | 2, 3 | mpan2 687 | . 2 ⊢ (𝐽 ∈ Top → ∪ ∅ ∈ 𝐽) |
5 | 1, 4 | eqeltrrid 2844 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 Topctop 21950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-sn 4559 df-uni 4837 df-top 21951 |
This theorem is referenced by: 0ntop 21962 topgele 21987 tgclb 22028 0top 22041 en1top 22042 en2top 22043 topcld 22094 clsval2 22109 ntr0 22140 opnnei 22179 0nei 22187 restrcl 22216 rest0 22228 ordtrest2lem 22262 iocpnfordt 22274 icomnfordt 22275 cnindis 22351 isconn2 22473 kqtop 22804 mopn0 23560 locfinref 31693 ordtrest2NEWlem 31774 sxbrsigalem3 32139 cnambfre 35752 |
Copyright terms: Public domain | W3C validator |