MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0opn Structured version   Visualization version   GIF version

Theorem 0opn 22926
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
Assertion
Ref Expression
0opn (𝐽 ∈ Top → ∅ ∈ 𝐽)

Proof of Theorem 0opn
StepHypRef Expression
1 uni0 4940 . 2 ∅ = ∅
2 0ss 4406 . . 3 ∅ ⊆ 𝐽
3 uniopn 22919 . . 3 ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∅ ∈ 𝐽)
42, 3mpan2 691 . 2 (𝐽 ∈ Top → ∅ ∈ 𝐽)
51, 4eqeltrrid 2844 1 (𝐽 ∈ Top → ∅ ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3963  c0 4339   cuni 4912  Topctop 22915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-11 2155  ax-ext 2706  ax-sep 5302
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-in 3970  df-ss 3980  df-nul 4340  df-pw 4607  df-sn 4632  df-uni 4913  df-top 22916
This theorem is referenced by:  0ntop  22927  topgele  22952  tgclb  22993  0top  23006  en1top  23007  en2top  23008  topcld  23059  clsval2  23074  ntr0  23105  opnnei  23144  0nei  23152  restrcl  23181  rest0  23193  ordtrest2lem  23227  iocpnfordt  23239  icomnfordt  23240  cnindis  23316  isconn2  23438  kqtop  23769  mopn0  24527  locfinref  33802  ordtrest2NEWlem  33883  sxbrsigalem3  34254  cnambfre  37655
  Copyright terms: Public domain W3C validator