| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0opn | Structured version Visualization version GIF version | ||
| Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
| Ref | Expression |
|---|---|
| 0opn | ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uni0 4887 | . 2 ⊢ ∪ ∅ = ∅ | |
| 2 | 0ss 4350 | . . 3 ⊢ ∅ ⊆ 𝐽 | |
| 3 | uniopn 22813 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∪ ∅ ∈ 𝐽) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐽 ∈ Top → ∪ ∅ ∈ 𝐽) |
| 5 | 1, 4 | eqeltrrid 2836 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3902 ∅c0 4283 ∪ cuni 4859 Topctop 22809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-in 3909 df-ss 3919 df-nul 4284 df-pw 4552 df-sn 4577 df-uni 4860 df-top 22810 |
| This theorem is referenced by: 0ntop 22821 topgele 22846 tgclb 22886 0top 22899 en1top 22900 en2top 22901 topcld 22951 clsval2 22966 ntr0 22997 opnnei 23036 0nei 23044 restrcl 23073 rest0 23085 ordtrest2lem 23119 iocpnfordt 23131 icomnfordt 23132 cnindis 23208 isconn2 23330 kqtop 23661 mopn0 24414 locfinref 33852 ordtrest2NEWlem 33933 sxbrsigalem3 34283 cnambfre 37714 |
| Copyright terms: Public domain | W3C validator |