![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0opn | Structured version Visualization version GIF version |
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
Ref | Expression |
---|---|
0opn | ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uni0 4737 | . 2 ⊢ ∪ ∅ = ∅ | |
2 | 0ss 4234 | . . 3 ⊢ ∅ ⊆ 𝐽 | |
3 | uniopn 21203 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∪ ∅ ∈ 𝐽) | |
4 | 2, 3 | mpan2 678 | . 2 ⊢ (𝐽 ∈ Top → ∪ ∅ ∈ 𝐽) |
5 | 1, 4 | syl5eqelr 2868 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2048 ⊆ wss 3828 ∅c0 4177 ∪ cuni 4710 Topctop 21199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2747 ax-sep 5058 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2756 df-cleq 2768 df-clel 2843 df-nfc 2915 df-ral 3090 df-rex 3091 df-v 3414 df-dif 3831 df-in 3835 df-ss 3842 df-nul 4178 df-pw 4422 df-sn 4440 df-uni 4711 df-top 21200 |
This theorem is referenced by: 0ntop 21211 topgele 21236 tgclb 21276 0top 21289 en1top 21290 en2top 21291 topcld 21341 clsval2 21356 ntr0 21387 opnnei 21426 0nei 21434 restrcl 21463 rest0 21475 ordtrest2lem 21509 iocpnfordt 21521 icomnfordt 21522 cnindis 21598 isconn2 21720 kqtop 22051 mopn0 22805 locfinref 30740 ordtrest2NEWlem 30800 sxbrsigalem3 31166 cnambfre 34359 |
Copyright terms: Public domain | W3C validator |