Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0opn | Structured version Visualization version GIF version |
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
Ref | Expression |
---|---|
0opn | ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uni0 4869 | . 2 ⊢ ∪ ∅ = ∅ | |
2 | 0ss 4330 | . . 3 ⊢ ∅ ⊆ 𝐽 | |
3 | uniopn 22046 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∪ ∅ ∈ 𝐽) | |
4 | 2, 3 | mpan2 688 | . 2 ⊢ (𝐽 ∈ Top → ∪ ∅ ∈ 𝐽) |
5 | 1, 4 | eqeltrrid 2844 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3887 ∅c0 4256 ∪ cuni 4839 Topctop 22042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-sn 4562 df-uni 4840 df-top 22043 |
This theorem is referenced by: 0ntop 22054 topgele 22079 tgclb 22120 0top 22133 en1top 22134 en2top 22135 topcld 22186 clsval2 22201 ntr0 22232 opnnei 22271 0nei 22279 restrcl 22308 rest0 22320 ordtrest2lem 22354 iocpnfordt 22366 icomnfordt 22367 cnindis 22443 isconn2 22565 kqtop 22896 mopn0 23654 locfinref 31791 ordtrest2NEWlem 31872 sxbrsigalem3 32239 cnambfre 35825 |
Copyright terms: Public domain | W3C validator |