| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0opn | Structured version Visualization version GIF version | ||
| Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
| Ref | Expression |
|---|---|
| 0opn | ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uni0 4899 | . 2 ⊢ ∪ ∅ = ∅ | |
| 2 | 0ss 4363 | . . 3 ⊢ ∅ ⊆ 𝐽 | |
| 3 | uniopn 22784 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∪ ∅ ∈ 𝐽) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐽 ∈ Top → ∪ ∅ ∈ 𝐽) |
| 5 | 1, 4 | eqeltrrid 2833 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 ∅c0 4296 ∪ cuni 4871 Topctop 22780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-in 3921 df-ss 3931 df-nul 4297 df-pw 4565 df-sn 4590 df-uni 4872 df-top 22781 |
| This theorem is referenced by: 0ntop 22792 topgele 22817 tgclb 22857 0top 22870 en1top 22871 en2top 22872 topcld 22922 clsval2 22937 ntr0 22968 opnnei 23007 0nei 23015 restrcl 23044 rest0 23056 ordtrest2lem 23090 iocpnfordt 23102 icomnfordt 23103 cnindis 23179 isconn2 23301 kqtop 23632 mopn0 24386 locfinref 33831 ordtrest2NEWlem 33912 sxbrsigalem3 34263 cnambfre 37662 |
| Copyright terms: Public domain | W3C validator |