MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0opn Structured version   Visualization version   GIF version

Theorem 0opn 22931
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
Assertion
Ref Expression
0opn (𝐽 ∈ Top → ∅ ∈ 𝐽)

Proof of Theorem 0opn
StepHypRef Expression
1 uni0 4959 . 2 ∅ = ∅
2 0ss 4423 . . 3 ∅ ⊆ 𝐽
3 uniopn 22924 . . 3 ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∅ ∈ 𝐽)
42, 3mpan2 690 . 2 (𝐽 ∈ Top → ∅ ∈ 𝐽)
51, 4eqeltrrid 2849 1 (𝐽 ∈ Top → ∅ ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3976  c0 4352   cuni 4931  Topctop 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-in 3983  df-ss 3993  df-nul 4353  df-pw 4624  df-sn 4649  df-uni 4932  df-top 22921
This theorem is referenced by:  0ntop  22932  topgele  22957  tgclb  22998  0top  23011  en1top  23012  en2top  23013  topcld  23064  clsval2  23079  ntr0  23110  opnnei  23149  0nei  23157  restrcl  23186  rest0  23198  ordtrest2lem  23232  iocpnfordt  23244  icomnfordt  23245  cnindis  23321  isconn2  23443  kqtop  23774  mopn0  24532  locfinref  33787  ordtrest2NEWlem  33868  sxbrsigalem3  34237  cnambfre  37628
  Copyright terms: Public domain W3C validator