|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 0opn | Structured version Visualization version GIF version | ||
| Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) | 
| Ref | Expression | 
|---|---|
| 0opn | ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uni0 4934 | . 2 ⊢ ∪ ∅ = ∅ | |
| 2 | 0ss 4399 | . . 3 ⊢ ∅ ⊆ 𝐽 | |
| 3 | uniopn 22904 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∪ ∅ ∈ 𝐽) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐽 ∈ Top → ∪ ∅ ∈ 𝐽) | 
| 5 | 1, 4 | eqeltrrid 2845 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2107 ⊆ wss 3950 ∅c0 4332 ∪ cuni 4906 Topctop 22900 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-ext 2707 ax-sep 5295 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-in 3957 df-ss 3967 df-nul 4333 df-pw 4601 df-sn 4626 df-uni 4907 df-top 22901 | 
| This theorem is referenced by: 0ntop 22912 topgele 22937 tgclb 22978 0top 22991 en1top 22992 en2top 22993 topcld 23044 clsval2 23059 ntr0 23090 opnnei 23129 0nei 23137 restrcl 23166 rest0 23178 ordtrest2lem 23212 iocpnfordt 23224 icomnfordt 23225 cnindis 23301 isconn2 23423 kqtop 23754 mopn0 24512 locfinref 33841 ordtrest2NEWlem 33922 sxbrsigalem3 34275 cnambfre 37676 | 
| Copyright terms: Public domain | W3C validator |