| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0opn | Structured version Visualization version GIF version | ||
| Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
| Ref | Expression |
|---|---|
| 0opn | ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uni0 4888 | . 2 ⊢ ∪ ∅ = ∅ | |
| 2 | 0ss 4349 | . . 3 ⊢ ∅ ⊆ 𝐽 | |
| 3 | uniopn 22815 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∪ ∅ ∈ 𝐽) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐽 ∈ Top → ∪ ∅ ∈ 𝐽) |
| 5 | 1, 4 | eqeltrrid 2838 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ⊆ wss 3898 ∅c0 4282 ∪ cuni 4860 Topctop 22811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-in 3905 df-ss 3915 df-nul 4283 df-pw 4553 df-uni 4861 df-top 22812 |
| This theorem is referenced by: 0ntop 22823 topgele 22848 tgclb 22888 0top 22901 en1top 22902 en2top 22903 topcld 22953 clsval2 22968 ntr0 22999 opnnei 23038 0nei 23046 restrcl 23075 rest0 23087 ordtrest2lem 23121 iocpnfordt 23133 icomnfordt 23134 cnindis 23210 isconn2 23332 kqtop 23663 mopn0 24416 locfinref 33877 ordtrest2NEWlem 33958 sxbrsigalem3 34308 cnambfre 37731 |
| Copyright terms: Public domain | W3C validator |