MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0opn Structured version   Visualization version   GIF version

Theorem 0opn 22151
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
Assertion
Ref Expression
0opn (𝐽 ∈ Top → ∅ ∈ 𝐽)

Proof of Theorem 0opn
StepHypRef Expression
1 uni0 4882 . 2 ∅ = ∅
2 0ss 4342 . . 3 ∅ ⊆ 𝐽
3 uniopn 22144 . . 3 ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∅ ∈ 𝐽)
42, 3mpan2 688 . 2 (𝐽 ∈ Top → ∅ ∈ 𝐽)
51, 4eqeltrrid 2842 1 (𝐽 ∈ Top → ∅ ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  wss 3897  c0 4268   cuni 4851  Topctop 22140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-11 2153  ax-ext 2707  ax-sep 5240
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-in 3904  df-ss 3914  df-nul 4269  df-pw 4548  df-sn 4573  df-uni 4852  df-top 22141
This theorem is referenced by:  0ntop  22152  topgele  22177  tgclb  22218  0top  22231  en1top  22232  en2top  22233  topcld  22284  clsval2  22299  ntr0  22330  opnnei  22369  0nei  22377  restrcl  22406  rest0  22418  ordtrest2lem  22452  iocpnfordt  22464  icomnfordt  22465  cnindis  22541  isconn2  22663  kqtop  22994  mopn0  23752  locfinref  32030  ordtrest2NEWlem  32111  sxbrsigalem3  32480  cnambfre  35923
  Copyright terms: Public domain W3C validator