![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0opn | Structured version Visualization version GIF version |
Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
Ref | Expression |
---|---|
0opn | ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uni0 4959 | . 2 ⊢ ∪ ∅ = ∅ | |
2 | 0ss 4423 | . . 3 ⊢ ∅ ⊆ 𝐽 | |
3 | uniopn 22924 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∪ ∅ ∈ 𝐽) | |
4 | 2, 3 | mpan2 690 | . 2 ⊢ (𝐽 ∈ Top → ∪ ∅ ∈ 𝐽) |
5 | 1, 4 | eqeltrrid 2849 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3976 ∅c0 4352 ∪ cuni 4931 Topctop 22920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 df-ss 3993 df-nul 4353 df-pw 4624 df-sn 4649 df-uni 4932 df-top 22921 |
This theorem is referenced by: 0ntop 22932 topgele 22957 tgclb 22998 0top 23011 en1top 23012 en2top 23013 topcld 23064 clsval2 23079 ntr0 23110 opnnei 23149 0nei 23157 restrcl 23186 rest0 23198 ordtrest2lem 23232 iocpnfordt 23244 icomnfordt 23245 cnindis 23321 isconn2 23443 kqtop 23774 mopn0 24532 locfinref 33787 ordtrest2NEWlem 33868 sxbrsigalem3 34237 cnambfre 37628 |
Copyright terms: Public domain | W3C validator |