| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0opn | Structured version Visualization version GIF version | ||
| Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
| Ref | Expression |
|---|---|
| 0opn | ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uni0 4889 | . 2 ⊢ ∪ ∅ = ∅ | |
| 2 | 0ss 4353 | . . 3 ⊢ ∅ ⊆ 𝐽 | |
| 3 | uniopn 22800 | . . 3 ⊢ ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → ∪ ∅ ∈ 𝐽) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐽 ∈ Top → ∪ ∅ ∈ 𝐽) |
| 5 | 1, 4 | eqeltrrid 2833 | 1 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3905 ∅c0 4286 ∪ cuni 4861 Topctop 22796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5238 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-in 3912 df-ss 3922 df-nul 4287 df-pw 4555 df-sn 4580 df-uni 4862 df-top 22797 |
| This theorem is referenced by: 0ntop 22808 topgele 22833 tgclb 22873 0top 22886 en1top 22887 en2top 22888 topcld 22938 clsval2 22953 ntr0 22984 opnnei 23023 0nei 23031 restrcl 23060 rest0 23072 ordtrest2lem 23106 iocpnfordt 23118 icomnfordt 23119 cnindis 23195 isconn2 23317 kqtop 23648 mopn0 24402 locfinref 33810 ordtrest2NEWlem 33891 sxbrsigalem3 34242 cnambfre 37650 |
| Copyright terms: Public domain | W3C validator |