| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topopn | Structured version Visualization version GIF version | ||
| Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
| Ref | Expression |
|---|---|
| 1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| topopn | ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1open.1 | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ssid 3966 | . . 3 ⊢ 𝐽 ⊆ 𝐽 | |
| 3 | uniopn 22760 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐽 ⊆ 𝐽) → ∪ 𝐽 ∈ 𝐽) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 5 | 1, 4 | eqeltrid 2832 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ∪ cuni 4867 Topctop 22756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-in 3918 df-ss 3928 df-pw 4561 df-uni 4868 df-top 22757 |
| This theorem is referenced by: riinopn 22771 toponmax 22789 cldval 22886 ntrfval 22887 clsfval 22888 iscld 22890 ntrval 22899 clsval 22900 0cld 22901 clsval2 22913 ntrtop 22933 toponmre 22956 neifval 22962 neif 22963 neival 22965 isnei 22966 tpnei 22984 lpfval 23001 lpval 23002 restcld 23035 restcls 23044 restntr 23045 cnrest 23148 cmpsub 23263 hauscmplem 23269 cmpfi 23271 isconn2 23277 connsubclo 23287 1stcfb 23308 1stcelcls 23324 islly2 23347 lly1stc 23359 islocfin 23380 finlocfin 23383 cmpkgen 23414 llycmpkgen 23415 ptbasid 23438 ptpjpre2 23443 ptopn2 23447 xkoopn 23452 xkouni 23462 txcld 23466 txcn 23489 ptrescn 23502 txtube 23503 txhaus 23510 xkoptsub 23517 xkopt 23518 xkopjcn 23519 qtoptop 23563 qtopuni 23565 opnfbas 23705 flimval 23826 flimfil 23832 hausflim 23844 hauspwpwf1 23850 hauspwpwdom 23851 flimfnfcls 23891 cnpfcfi 23903 bcthlem5 25204 dvply1 26167 cldssbrsiga 34150 dya2iocucvr 34248 kur14lem7 35172 kur14lem9 35174 connpconn 35195 cvmliftmolem1 35241 ordtop 36397 pibt2 37378 ntrelmap 44087 clselmap 44089 dssmapntrcls 44090 dssmapclsntr 44091 toprestsubel 45121 reopn 45260 toplatglb0 48960 |
| Copyright terms: Public domain | W3C validator |