| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topopn | Structured version Visualization version GIF version | ||
| Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
| Ref | Expression |
|---|---|
| 1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| topopn | ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1open.1 | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ssid 3972 | . . 3 ⊢ 𝐽 ⊆ 𝐽 | |
| 3 | uniopn 22791 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐽 ⊆ 𝐽) → ∪ 𝐽 ∈ 𝐽) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 5 | 1, 4 | eqeltrid 2833 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ∪ cuni 4874 Topctop 22787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-pw 4568 df-uni 4875 df-top 22788 |
| This theorem is referenced by: riinopn 22802 toponmax 22820 cldval 22917 ntrfval 22918 clsfval 22919 iscld 22921 ntrval 22930 clsval 22931 0cld 22932 clsval2 22944 ntrtop 22964 toponmre 22987 neifval 22993 neif 22994 neival 22996 isnei 22997 tpnei 23015 lpfval 23032 lpval 23033 restcld 23066 restcls 23075 restntr 23076 cnrest 23179 cmpsub 23294 hauscmplem 23300 cmpfi 23302 isconn2 23308 connsubclo 23318 1stcfb 23339 1stcelcls 23355 islly2 23378 lly1stc 23390 islocfin 23411 finlocfin 23414 cmpkgen 23445 llycmpkgen 23446 ptbasid 23469 ptpjpre2 23474 ptopn2 23478 xkoopn 23483 xkouni 23493 txcld 23497 txcn 23520 ptrescn 23533 txtube 23534 txhaus 23541 xkoptsub 23548 xkopt 23549 xkopjcn 23550 qtoptop 23594 qtopuni 23596 opnfbas 23736 flimval 23857 flimfil 23863 hausflim 23875 hauspwpwf1 23881 hauspwpwdom 23882 flimfnfcls 23922 cnpfcfi 23934 bcthlem5 25235 dvply1 26198 cldssbrsiga 34184 dya2iocucvr 34282 kur14lem7 35206 kur14lem9 35208 connpconn 35229 cvmliftmolem1 35275 ordtop 36431 pibt2 37412 ntrelmap 44121 clselmap 44123 dssmapntrcls 44124 dssmapclsntr 44125 toprestsubel 45155 reopn 45294 toplatglb0 48991 |
| Copyright terms: Public domain | W3C validator |