Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > topopn | Structured version Visualization version GIF version |
Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
Ref | Expression |
---|---|
1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
topopn | ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1open.1 | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
2 | ssid 3939 | . . 3 ⊢ 𝐽 ⊆ 𝐽 | |
3 | uniopn 21954 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐽 ⊆ 𝐽) → ∪ 𝐽 ∈ 𝐽) | |
4 | 2, 3 | mpan2 687 | . 2 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
5 | 1, 4 | eqeltrid 2843 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ∪ cuni 4836 Topctop 21950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 df-uni 4837 df-top 21951 |
This theorem is referenced by: riinopn 21965 toponmax 21983 cldval 22082 ntrfval 22083 clsfval 22084 iscld 22086 ntrval 22095 clsval 22096 0cld 22097 clsval2 22109 ntrtop 22129 toponmre 22152 neifval 22158 neif 22159 neival 22161 isnei 22162 tpnei 22180 lpfval 22197 lpval 22198 restcld 22231 restcls 22240 restntr 22241 cnrest 22344 cmpsub 22459 hauscmplem 22465 cmpfi 22467 isconn2 22473 connsubclo 22483 1stcfb 22504 1stcelcls 22520 islly2 22543 lly1stc 22555 islocfin 22576 finlocfin 22579 cmpkgen 22610 llycmpkgen 22611 ptbasid 22634 ptpjpre2 22639 ptopn2 22643 xkoopn 22648 xkouni 22658 txcld 22662 txcn 22685 ptrescn 22698 txtube 22699 txhaus 22706 xkoptsub 22713 xkopt 22714 xkopjcn 22715 qtoptop 22759 qtopuni 22761 opnfbas 22901 flimval 23022 flimfil 23028 hausflim 23040 hauspwpwf1 23046 hauspwpwdom 23047 flimfnfcls 23087 cnpfcfi 23099 bcthlem5 24397 dvply1 25349 cldssbrsiga 32055 dya2iocucvr 32151 kur14lem7 33074 kur14lem9 33076 connpconn 33097 cvmliftmolem1 33143 ordtop 34552 pibt2 35515 ntrelmap 41624 clselmap 41626 dssmapntrcls 41627 dssmapclsntr 41628 reopn 42717 toplatglb0 46173 |
Copyright terms: Public domain | W3C validator |