| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topopn | Structured version Visualization version GIF version | ||
| Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
| Ref | Expression |
|---|---|
| 1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| topopn | ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1open.1 | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ssid 3969 | . . 3 ⊢ 𝐽 ⊆ 𝐽 | |
| 3 | uniopn 22784 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐽 ⊆ 𝐽) → ∪ 𝐽 ∈ 𝐽) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 5 | 1, 4 | eqeltrid 2832 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ∪ cuni 4871 Topctop 22780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-pw 4565 df-uni 4872 df-top 22781 |
| This theorem is referenced by: riinopn 22795 toponmax 22813 cldval 22910 ntrfval 22911 clsfval 22912 iscld 22914 ntrval 22923 clsval 22924 0cld 22925 clsval2 22937 ntrtop 22957 toponmre 22980 neifval 22986 neif 22987 neival 22989 isnei 22990 tpnei 23008 lpfval 23025 lpval 23026 restcld 23059 restcls 23068 restntr 23069 cnrest 23172 cmpsub 23287 hauscmplem 23293 cmpfi 23295 isconn2 23301 connsubclo 23311 1stcfb 23332 1stcelcls 23348 islly2 23371 lly1stc 23383 islocfin 23404 finlocfin 23407 cmpkgen 23438 llycmpkgen 23439 ptbasid 23462 ptpjpre2 23467 ptopn2 23471 xkoopn 23476 xkouni 23486 txcld 23490 txcn 23513 ptrescn 23526 txtube 23527 txhaus 23534 xkoptsub 23541 xkopt 23542 xkopjcn 23543 qtoptop 23587 qtopuni 23589 opnfbas 23729 flimval 23850 flimfil 23856 hausflim 23868 hauspwpwf1 23874 hauspwpwdom 23875 flimfnfcls 23915 cnpfcfi 23927 bcthlem5 25228 dvply1 26191 cldssbrsiga 34177 dya2iocucvr 34275 kur14lem7 35199 kur14lem9 35201 connpconn 35222 cvmliftmolem1 35268 ordtop 36424 pibt2 37405 ntrelmap 44114 clselmap 44116 dssmapntrcls 44117 dssmapclsntr 44118 toprestsubel 45148 reopn 45287 toplatglb0 48987 |
| Copyright terms: Public domain | W3C validator |