| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topopn | Structured version Visualization version GIF version | ||
| Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
| Ref | Expression |
|---|---|
| 1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| topopn | ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1open.1 | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ssid 3966 | . . 3 ⊢ 𝐽 ⊆ 𝐽 | |
| 3 | uniopn 22817 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐽 ⊆ 𝐽) → ∪ 𝐽 ∈ 𝐽) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 5 | 1, 4 | eqeltrid 2832 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ∪ cuni 4867 Topctop 22813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-in 3918 df-ss 3928 df-pw 4561 df-uni 4868 df-top 22814 |
| This theorem is referenced by: riinopn 22828 toponmax 22846 cldval 22943 ntrfval 22944 clsfval 22945 iscld 22947 ntrval 22956 clsval 22957 0cld 22958 clsval2 22970 ntrtop 22990 toponmre 23013 neifval 23019 neif 23020 neival 23022 isnei 23023 tpnei 23041 lpfval 23058 lpval 23059 restcld 23092 restcls 23101 restntr 23102 cnrest 23205 cmpsub 23320 hauscmplem 23326 cmpfi 23328 isconn2 23334 connsubclo 23344 1stcfb 23365 1stcelcls 23381 islly2 23404 lly1stc 23416 islocfin 23437 finlocfin 23440 cmpkgen 23471 llycmpkgen 23472 ptbasid 23495 ptpjpre2 23500 ptopn2 23504 xkoopn 23509 xkouni 23519 txcld 23523 txcn 23546 ptrescn 23559 txtube 23560 txhaus 23567 xkoptsub 23574 xkopt 23575 xkopjcn 23576 qtoptop 23620 qtopuni 23622 opnfbas 23762 flimval 23883 flimfil 23889 hausflim 23901 hauspwpwf1 23907 hauspwpwdom 23908 flimfnfcls 23948 cnpfcfi 23960 bcthlem5 25261 dvply1 26224 cldssbrsiga 34170 dya2iocucvr 34268 kur14lem7 35192 kur14lem9 35194 connpconn 35215 cvmliftmolem1 35261 ordtop 36417 pibt2 37398 ntrelmap 44107 clselmap 44109 dssmapntrcls 44110 dssmapclsntr 44111 toprestsubel 45141 reopn 45280 toplatglb0 48980 |
| Copyright terms: Public domain | W3C validator |