| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topopn | Structured version Visualization version GIF version | ||
| Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
| Ref | Expression |
|---|---|
| 1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| topopn | ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1open.1 | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ssid 3952 | . . 3 ⊢ 𝐽 ⊆ 𝐽 | |
| 3 | uniopn 22812 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐽 ⊆ 𝐽) → ∪ 𝐽 ∈ 𝐽) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 5 | 1, 4 | eqeltrid 2835 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ∪ cuni 4856 Topctop 22808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 df-pw 4549 df-uni 4857 df-top 22809 |
| This theorem is referenced by: riinopn 22823 toponmax 22841 cldval 22938 ntrfval 22939 clsfval 22940 iscld 22942 ntrval 22951 clsval 22952 0cld 22953 clsval2 22965 ntrtop 22985 toponmre 23008 neifval 23014 neif 23015 neival 23017 isnei 23018 tpnei 23036 lpfval 23053 lpval 23054 restcld 23087 restcls 23096 restntr 23097 cnrest 23200 cmpsub 23315 hauscmplem 23321 cmpfi 23323 isconn2 23329 connsubclo 23339 1stcfb 23360 1stcelcls 23376 islly2 23399 lly1stc 23411 islocfin 23432 finlocfin 23435 cmpkgen 23466 llycmpkgen 23467 ptbasid 23490 ptpjpre2 23495 ptopn2 23499 xkoopn 23504 xkouni 23514 txcld 23518 txcn 23541 ptrescn 23554 txtube 23555 txhaus 23562 xkoptsub 23569 xkopt 23570 xkopjcn 23571 qtoptop 23615 qtopuni 23617 opnfbas 23757 flimval 23878 flimfil 23884 hausflim 23896 hauspwpwf1 23902 hauspwpwdom 23903 flimfnfcls 23943 cnpfcfi 23955 bcthlem5 25255 dvply1 26218 cldssbrsiga 34200 dya2iocucvr 34297 kur14lem7 35256 kur14lem9 35258 connpconn 35279 cvmliftmolem1 35325 ordtop 36478 pibt2 37459 ntrelmap 44166 clselmap 44168 dssmapntrcls 44169 dssmapclsntr 44170 toprestsubel 45199 reopn 45338 toplatglb0 49038 |
| Copyright terms: Public domain | W3C validator |