Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > topopn | Structured version Visualization version GIF version |
Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
Ref | Expression |
---|---|
1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
topopn | ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1open.1 | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
2 | ssid 3948 | . . 3 ⊢ 𝐽 ⊆ 𝐽 | |
3 | uniopn 22042 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐽 ⊆ 𝐽) → ∪ 𝐽 ∈ 𝐽) | |
4 | 2, 3 | mpan2 688 | . 2 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
5 | 1, 4 | eqeltrid 2845 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 ∪ cuni 4845 Topctop 22038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rab 3075 df-v 3433 df-in 3899 df-ss 3909 df-pw 4541 df-uni 4846 df-top 22039 |
This theorem is referenced by: riinopn 22053 toponmax 22071 cldval 22170 ntrfval 22171 clsfval 22172 iscld 22174 ntrval 22183 clsval 22184 0cld 22185 clsval2 22197 ntrtop 22217 toponmre 22240 neifval 22246 neif 22247 neival 22249 isnei 22250 tpnei 22268 lpfval 22285 lpval 22286 restcld 22319 restcls 22328 restntr 22329 cnrest 22432 cmpsub 22547 hauscmplem 22553 cmpfi 22555 isconn2 22561 connsubclo 22571 1stcfb 22592 1stcelcls 22608 islly2 22631 lly1stc 22643 islocfin 22664 finlocfin 22667 cmpkgen 22698 llycmpkgen 22699 ptbasid 22722 ptpjpre2 22727 ptopn2 22731 xkoopn 22736 xkouni 22746 txcld 22750 txcn 22773 ptrescn 22786 txtube 22787 txhaus 22794 xkoptsub 22801 xkopt 22802 xkopjcn 22803 qtoptop 22847 qtopuni 22849 opnfbas 22989 flimval 23110 flimfil 23116 hausflim 23128 hauspwpwf1 23134 hauspwpwdom 23135 flimfnfcls 23175 cnpfcfi 23187 bcthlem5 24488 dvply1 25440 cldssbrsiga 32149 dya2iocucvr 32245 kur14lem7 33168 kur14lem9 33170 connpconn 33191 cvmliftmolem1 33237 ordtop 34619 pibt2 35582 ntrelmap 41703 clselmap 41705 dssmapntrcls 41706 dssmapclsntr 41707 reopn 42796 toplatglb0 46252 |
Copyright terms: Public domain | W3C validator |