![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topopn | Structured version Visualization version GIF version |
Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
Ref | Expression |
---|---|
1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
topopn | ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1open.1 | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
2 | ssid 4031 | . . 3 ⊢ 𝐽 ⊆ 𝐽 | |
3 | uniopn 22924 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐽 ⊆ 𝐽) → ∪ 𝐽 ∈ 𝐽) | |
4 | 2, 3 | mpan2 690 | . 2 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
5 | 1, 4 | eqeltrid 2848 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∪ cuni 4931 Topctop 22920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-pw 4624 df-uni 4932 df-top 22921 |
This theorem is referenced by: riinopn 22935 toponmax 22953 cldval 23052 ntrfval 23053 clsfval 23054 iscld 23056 ntrval 23065 clsval 23066 0cld 23067 clsval2 23079 ntrtop 23099 toponmre 23122 neifval 23128 neif 23129 neival 23131 isnei 23132 tpnei 23150 lpfval 23167 lpval 23168 restcld 23201 restcls 23210 restntr 23211 cnrest 23314 cmpsub 23429 hauscmplem 23435 cmpfi 23437 isconn2 23443 connsubclo 23453 1stcfb 23474 1stcelcls 23490 islly2 23513 lly1stc 23525 islocfin 23546 finlocfin 23549 cmpkgen 23580 llycmpkgen 23581 ptbasid 23604 ptpjpre2 23609 ptopn2 23613 xkoopn 23618 xkouni 23628 txcld 23632 txcn 23655 ptrescn 23668 txtube 23669 txhaus 23676 xkoptsub 23683 xkopt 23684 xkopjcn 23685 qtoptop 23729 qtopuni 23731 opnfbas 23871 flimval 23992 flimfil 23998 hausflim 24010 hauspwpwf1 24016 hauspwpwdom 24017 flimfnfcls 24057 cnpfcfi 24069 bcthlem5 25381 dvply1 26343 cldssbrsiga 34151 dya2iocucvr 34249 kur14lem7 35180 kur14lem9 35182 connpconn 35203 cvmliftmolem1 35249 ordtop 36402 pibt2 37383 ntrelmap 44087 clselmap 44089 dssmapntrcls 44090 dssmapclsntr 44091 toprestsubel 45059 reopn 45204 toplatglb0 48671 |
Copyright terms: Public domain | W3C validator |