| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topopn | Structured version Visualization version GIF version | ||
| Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
| Ref | Expression |
|---|---|
| 1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| topopn | ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1open.1 | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ssid 3958 | . . 3 ⊢ 𝐽 ⊆ 𝐽 | |
| 3 | uniopn 22782 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐽 ⊆ 𝐽) → ∪ 𝐽 ∈ 𝐽) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 5 | 1, 4 | eqeltrid 2832 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ∪ cuni 4858 Topctop 22778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-in 3910 df-ss 3920 df-pw 4553 df-uni 4859 df-top 22779 |
| This theorem is referenced by: riinopn 22793 toponmax 22811 cldval 22908 ntrfval 22909 clsfval 22910 iscld 22912 ntrval 22921 clsval 22922 0cld 22923 clsval2 22935 ntrtop 22955 toponmre 22978 neifval 22984 neif 22985 neival 22987 isnei 22988 tpnei 23006 lpfval 23023 lpval 23024 restcld 23057 restcls 23066 restntr 23067 cnrest 23170 cmpsub 23285 hauscmplem 23291 cmpfi 23293 isconn2 23299 connsubclo 23309 1stcfb 23330 1stcelcls 23346 islly2 23369 lly1stc 23381 islocfin 23402 finlocfin 23405 cmpkgen 23436 llycmpkgen 23437 ptbasid 23460 ptpjpre2 23465 ptopn2 23469 xkoopn 23474 xkouni 23484 txcld 23488 txcn 23511 ptrescn 23524 txtube 23525 txhaus 23532 xkoptsub 23539 xkopt 23540 xkopjcn 23541 qtoptop 23585 qtopuni 23587 opnfbas 23727 flimval 23848 flimfil 23854 hausflim 23866 hauspwpwf1 23872 hauspwpwdom 23873 flimfnfcls 23913 cnpfcfi 23925 bcthlem5 25226 dvply1 26189 cldssbrsiga 34154 dya2iocucvr 34252 kur14lem7 35185 kur14lem9 35187 connpconn 35208 cvmliftmolem1 35254 ordtop 36410 pibt2 37391 ntrelmap 44098 clselmap 44100 dssmapntrcls 44101 dssmapclsntr 44102 toprestsubel 45132 reopn 45271 toplatglb0 48983 |
| Copyright terms: Public domain | W3C validator |