| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topopn | Structured version Visualization version GIF version | ||
| Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
| Ref | Expression |
|---|---|
| 1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| topopn | ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1open.1 | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ssid 3981 | . . 3 ⊢ 𝐽 ⊆ 𝐽 | |
| 3 | uniopn 22835 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐽 ⊆ 𝐽) → ∪ 𝐽 ∈ 𝐽) | |
| 4 | 2, 3 | mpan2 691 | . 2 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
| 5 | 1, 4 | eqeltrid 2838 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ∪ cuni 4883 Topctop 22831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 df-pw 4577 df-uni 4884 df-top 22832 |
| This theorem is referenced by: riinopn 22846 toponmax 22864 cldval 22961 ntrfval 22962 clsfval 22963 iscld 22965 ntrval 22974 clsval 22975 0cld 22976 clsval2 22988 ntrtop 23008 toponmre 23031 neifval 23037 neif 23038 neival 23040 isnei 23041 tpnei 23059 lpfval 23076 lpval 23077 restcld 23110 restcls 23119 restntr 23120 cnrest 23223 cmpsub 23338 hauscmplem 23344 cmpfi 23346 isconn2 23352 connsubclo 23362 1stcfb 23383 1stcelcls 23399 islly2 23422 lly1stc 23434 islocfin 23455 finlocfin 23458 cmpkgen 23489 llycmpkgen 23490 ptbasid 23513 ptpjpre2 23518 ptopn2 23522 xkoopn 23527 xkouni 23537 txcld 23541 txcn 23564 ptrescn 23577 txtube 23578 txhaus 23585 xkoptsub 23592 xkopt 23593 xkopjcn 23594 qtoptop 23638 qtopuni 23640 opnfbas 23780 flimval 23901 flimfil 23907 hausflim 23919 hauspwpwf1 23925 hauspwpwdom 23926 flimfnfcls 23966 cnpfcfi 23978 bcthlem5 25280 dvply1 26243 cldssbrsiga 34218 dya2iocucvr 34316 kur14lem7 35234 kur14lem9 35236 connpconn 35257 cvmliftmolem1 35303 ordtop 36454 pibt2 37435 ntrelmap 44149 clselmap 44151 dssmapntrcls 44152 dssmapclsntr 44153 toprestsubel 45178 reopn 45318 toplatglb0 48973 |
| Copyright terms: Public domain | W3C validator |