Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > topopn | Structured version Visualization version GIF version |
Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
Ref | Expression |
---|---|
1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
topopn | ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1open.1 | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
2 | ssid 3944 | . . 3 ⊢ 𝐽 ⊆ 𝐽 | |
3 | uniopn 22055 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐽 ⊆ 𝐽) → ∪ 𝐽 ∈ 𝐽) | |
4 | 2, 3 | mpan2 688 | . 2 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
5 | 1, 4 | eqeltrid 2844 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3888 ∪ cuni 4840 Topctop 22051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 ax-sep 5224 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rab 3074 df-v 3435 df-in 3895 df-ss 3905 df-pw 4536 df-uni 4841 df-top 22052 |
This theorem is referenced by: riinopn 22066 toponmax 22084 cldval 22183 ntrfval 22184 clsfval 22185 iscld 22187 ntrval 22196 clsval 22197 0cld 22198 clsval2 22210 ntrtop 22230 toponmre 22253 neifval 22259 neif 22260 neival 22262 isnei 22263 tpnei 22281 lpfval 22298 lpval 22299 restcld 22332 restcls 22341 restntr 22342 cnrest 22445 cmpsub 22560 hauscmplem 22566 cmpfi 22568 isconn2 22574 connsubclo 22584 1stcfb 22605 1stcelcls 22621 islly2 22644 lly1stc 22656 islocfin 22677 finlocfin 22680 cmpkgen 22711 llycmpkgen 22712 ptbasid 22735 ptpjpre2 22740 ptopn2 22744 xkoopn 22749 xkouni 22759 txcld 22763 txcn 22786 ptrescn 22799 txtube 22800 txhaus 22807 xkoptsub 22814 xkopt 22815 xkopjcn 22816 qtoptop 22860 qtopuni 22862 opnfbas 23002 flimval 23123 flimfil 23129 hausflim 23141 hauspwpwf1 23147 hauspwpwdom 23148 flimfnfcls 23188 cnpfcfi 23200 bcthlem5 24501 dvply1 25453 cldssbrsiga 32164 dya2iocucvr 32260 kur14lem7 33183 kur14lem9 33185 connpconn 33206 cvmliftmolem1 33252 ordtop 34634 pibt2 35597 ntrelmap 41742 clselmap 41744 dssmapntrcls 41745 dssmapclsntr 41746 reopn 42835 toplatglb0 46296 |
Copyright terms: Public domain | W3C validator |