Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0vconngr | Structured version Visualization version GIF version |
Description: A graph without vertices is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
Ref | Expression |
---|---|
0vconngr | ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ ConnGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rzal 4445 | . . 3 ⊢ ((Vtx‘𝐺) = ∅ → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) | |
2 | 1 | adantl 482 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) |
3 | eqid 2740 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
4 | 3 | isconngr 28547 | . . 3 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
5 | 4 | adantr 481 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
6 | 2, 5 | mpbird 256 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ ConnGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∃wex 1786 ∈ wcel 2110 ∀wral 3066 ∅c0 4262 class class class wbr 5079 ‘cfv 6431 (class class class)co 7269 Vtxcvtx 27362 PathsOncpthson 28076 ConnGraphcconngr 28544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-nul 5234 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-iota 6389 df-fv 6439 df-ov 7272 df-conngr 28545 |
This theorem is referenced by: 1conngr 28552 |
Copyright terms: Public domain | W3C validator |