MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0vconngr Structured version   Visualization version   GIF version

Theorem 0vconngr 30128
Description: A graph without vertices is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.)
Assertion
Ref Expression
0vconngr ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ ConnGraph)

Proof of Theorem 0vconngr
Dummy variables 𝑓 𝑘 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rzal 4474 . . 3 ((Vtx‘𝐺) = ∅ → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
21adantl 481 . 2 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
3 eqid 2730 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
43isconngr 30124 . . 3 (𝐺𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
54adantr 480 . 2 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
62, 5mpbird 257 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ ConnGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3045  c0 4298   class class class wbr 5109  cfv 6513  (class class class)co 7389  Vtxcvtx 28929  PathsOncpthson 29648  ConnGraphcconngr 30121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-ov 7392  df-conngr 30122
This theorem is referenced by:  1conngr  30129
  Copyright terms: Public domain W3C validator