MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0vconngr Structured version   Visualization version   GIF version

Theorem 0vconngr 29955
Description: A graph without vertices is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.)
Assertion
Ref Expression
0vconngr ((𝐺 ∈ π‘Š ∧ (Vtxβ€˜πΊ) = βˆ…) β†’ 𝐺 ∈ ConnGraph)

Proof of Theorem 0vconngr
Dummy variables 𝑓 π‘˜ 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rzal 4503 . . 3 ((Vtxβ€˜πΊ) = βˆ… β†’ βˆ€π‘˜ ∈ (Vtxβ€˜πΊ)βˆ€π‘› ∈ (Vtxβ€˜πΊ)βˆƒπ‘“βˆƒπ‘ 𝑓(π‘˜(PathsOnβ€˜πΊ)𝑛)𝑝)
21adantl 481 . 2 ((𝐺 ∈ π‘Š ∧ (Vtxβ€˜πΊ) = βˆ…) β†’ βˆ€π‘˜ ∈ (Vtxβ€˜πΊ)βˆ€π‘› ∈ (Vtxβ€˜πΊ)βˆƒπ‘“βˆƒπ‘ 𝑓(π‘˜(PathsOnβ€˜πΊ)𝑛)𝑝)
3 eqid 2726 . . . 4 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
43isconngr 29951 . . 3 (𝐺 ∈ π‘Š β†’ (𝐺 ∈ ConnGraph ↔ βˆ€π‘˜ ∈ (Vtxβ€˜πΊ)βˆ€π‘› ∈ (Vtxβ€˜πΊ)βˆƒπ‘“βˆƒπ‘ 𝑓(π‘˜(PathsOnβ€˜πΊ)𝑛)𝑝))
54adantr 480 . 2 ((𝐺 ∈ π‘Š ∧ (Vtxβ€˜πΊ) = βˆ…) β†’ (𝐺 ∈ ConnGraph ↔ βˆ€π‘˜ ∈ (Vtxβ€˜πΊ)βˆ€π‘› ∈ (Vtxβ€˜πΊ)βˆƒπ‘“βˆƒπ‘ 𝑓(π‘˜(PathsOnβ€˜πΊ)𝑛)𝑝))
62, 5mpbird 257 1 ((𝐺 ∈ π‘Š ∧ (Vtxβ€˜πΊ) = βˆ…) β†’ 𝐺 ∈ ConnGraph)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  βˆ€wral 3055  βˆ…c0 4317   class class class wbr 5141  β€˜cfv 6537  (class class class)co 7405  Vtxcvtx 28764  PathsOncpthson 29480  ConnGraphcconngr 29948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-nul 5299
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-iota 6489  df-fv 6545  df-ov 7408  df-conngr 29949
This theorem is referenced by:  1conngr  29956
  Copyright terms: Public domain W3C validator