MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1conngr Structured version   Visualization version   GIF version

Theorem 1conngr 30174
Description: A graph with (at most) one vertex is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.)
Assertion
Ref Expression
1conngr ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph)

Proof of Theorem 1conngr
Dummy variables 𝑓 𝑘 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snidg 4610 . . . . . . . . . 10 (𝑁 ∈ V → 𝑁 ∈ {𝑁})
21adantr 480 . . . . . . . . 9 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝑁 ∈ {𝑁})
3 eleq2 2820 . . . . . . . . . 10 ((Vtx‘𝐺) = {𝑁} → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁 ∈ {𝑁}))
43ad2antll 729 . . . . . . . . 9 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁 ∈ {𝑁}))
52, 4mpbird 257 . . . . . . . 8 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝑁 ∈ (Vtx‘𝐺))
6 eqid 2731 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
760pthonv 30109 . . . . . . . 8 (𝑁 ∈ (Vtx‘𝐺) → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)
85, 7syl 17 . . . . . . 7 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)
9 oveq2 7354 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝑁(PathsOn‘𝐺)𝑛) = (𝑁(PathsOn‘𝐺)𝑁))
109breqd 5100 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
11102exbidv 1925 . . . . . . . . 9 (𝑛 = 𝑁 → (∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
1211ralsng 4625 . . . . . . . 8 (𝑁 ∈ V → (∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
1312adantr 480 . . . . . . 7 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
148, 13mpbird 257 . . . . . 6 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝)
15 oveq1 7353 . . . . . . . . . . 11 (𝑘 = 𝑁 → (𝑘(PathsOn‘𝐺)𝑛) = (𝑁(PathsOn‘𝐺)𝑛))
1615breqd 5100 . . . . . . . . . 10 (𝑘 = 𝑁 → (𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
17162exbidv 1925 . . . . . . . . 9 (𝑘 = 𝑁 → (∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
1817ralbidv 3155 . . . . . . . 8 (𝑘 = 𝑁 → (∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
1918ralsng 4625 . . . . . . 7 (𝑁 ∈ V → (∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
2019adantr 480 . . . . . 6 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
2114, 20mpbird 257 . . . . 5 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
22 raleq 3289 . . . . . . 7 ((Vtx‘𝐺) = {𝑁} → (∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2322raleqbi1dv 3304 . . . . . 6 ((Vtx‘𝐺) = {𝑁} → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2423ad2antll 729 . . . . 5 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2521, 24mpbird 257 . . . 4 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
266isconngr 30169 . . . . 5 (𝐺𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2726ad2antrl 728 . . . 4 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2825, 27mpbird 257 . . 3 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝐺 ∈ ConnGraph)
2928ex 412 . 2 (𝑁 ∈ V → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph))
30 snprc 4667 . . 3 𝑁 ∈ V ↔ {𝑁} = ∅)
31 eqeq2 2743 . . . . 5 ({𝑁} = ∅ → ((Vtx‘𝐺) = {𝑁} ↔ (Vtx‘𝐺) = ∅))
3231anbi2d 630 . . . 4 ({𝑁} = ∅ → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) ↔ (𝐺𝑊 ∧ (Vtx‘𝐺) = ∅)))
33 0vconngr 30173 . . . 4 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ ConnGraph)
3432, 33biimtrdi 253 . . 3 ({𝑁} = ∅ → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph))
3530, 34sylbi 217 . 2 𝑁 ∈ V → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph))
3629, 35pm2.61i 182 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  Vcvv 3436  c0 4280  {csn 4573   class class class wbr 5089  cfv 6481  (class class class)co 7346  Vtxcvtx 28974  PathsOncpthson 29690  ConnGraphcconngr 30166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-wlks 29578  df-wlkson 29579  df-trls 29669  df-trlson 29670  df-pths 29692  df-pthson 29694  df-conngr 30167
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator