| Step | Hyp | Ref
| Expression |
| 1 | | snidg 4642 |
. . . . . . . . . 10
⊢ (𝑁 ∈ V → 𝑁 ∈ {𝑁}) |
| 2 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝑁 ∈ {𝑁}) |
| 3 | | eleq2 2822 |
. . . . . . . . . 10
⊢
((Vtx‘𝐺) =
{𝑁} → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁 ∈ {𝑁})) |
| 4 | 3 | ad2antll 729 |
. . . . . . . . 9
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁 ∈ {𝑁})) |
| 5 | 2, 4 | mpbird 257 |
. . . . . . . 8
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝑁 ∈ (Vtx‘𝐺)) |
| 6 | | eqid 2734 |
. . . . . . . . 9
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 7 | 6 | 0pthonv 30095 |
. . . . . . . 8
⊢ (𝑁 ∈ (Vtx‘𝐺) → ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝) |
| 8 | 5, 7 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝) |
| 9 | | oveq2 7422 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑁 → (𝑁(PathsOn‘𝐺)𝑛) = (𝑁(PathsOn‘𝐺)𝑁)) |
| 10 | 9 | breqd 5136 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → (𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)) |
| 11 | 10 | 2exbidv 1923 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → (∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)) |
| 12 | 11 | ralsng 4657 |
. . . . . . . 8
⊢ (𝑁 ∈ V → (∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)) |
| 13 | 12 | adantr 480 |
. . . . . . 7
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)) |
| 14 | 8, 13 | mpbird 257 |
. . . . . 6
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝) |
| 15 | | oveq1 7421 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑁 → (𝑘(PathsOn‘𝐺)𝑛) = (𝑁(PathsOn‘𝐺)𝑛)) |
| 16 | 15 | breqd 5136 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑁 → (𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝)) |
| 17 | 16 | 2exbidv 1923 |
. . . . . . . . 9
⊢ (𝑘 = 𝑁 → (∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝)) |
| 18 | 17 | ralbidv 3165 |
. . . . . . . 8
⊢ (𝑘 = 𝑁 → (∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝)) |
| 19 | 18 | ralsng 4657 |
. . . . . . 7
⊢ (𝑁 ∈ V → (∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝)) |
| 20 | 19 | adantr 480 |
. . . . . 6
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝)) |
| 21 | 14, 20 | mpbird 257 |
. . . . 5
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) |
| 22 | | raleq 3307 |
. . . . . . 7
⊢
((Vtx‘𝐺) =
{𝑁} → (∀𝑛 ∈ (Vtx‘𝐺)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 23 | 22 | raleqbi1dv 3322 |
. . . . . 6
⊢
((Vtx‘𝐺) =
{𝑁} → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 24 | 23 | ad2antll 729 |
. . . . 5
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 25 | 21, 24 | mpbird 257 |
. . . 4
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) |
| 26 | 6 | isconngr 30155 |
. . . . 5
⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 27 | 26 | ad2antrl 728 |
. . . 4
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 28 | 25, 27 | mpbird 257 |
. . 3
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝐺 ∈ ConnGraph) |
| 29 | 28 | ex 412 |
. 2
⊢ (𝑁 ∈ V → ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph)) |
| 30 | | snprc 4699 |
. . 3
⊢ (¬
𝑁 ∈ V ↔ {𝑁} = ∅) |
| 31 | | eqeq2 2746 |
. . . . 5
⊢ ({𝑁} = ∅ →
((Vtx‘𝐺) = {𝑁} ↔ (Vtx‘𝐺) = ∅)) |
| 32 | 31 | anbi2d 630 |
. . . 4
⊢ ({𝑁} = ∅ → ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁}) ↔ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅))) |
| 33 | | 0vconngr 30159 |
. . . 4
⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ ConnGraph) |
| 34 | 32, 33 | biimtrdi 253 |
. . 3
⊢ ({𝑁} = ∅ → ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph)) |
| 35 | 30, 34 | sylbi 217 |
. 2
⊢ (¬
𝑁 ∈ V → ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph)) |
| 36 | 29, 35 | pm2.61i 182 |
1
⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph) |