MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1conngr Structured version   Visualization version   GIF version

Theorem 1conngr 27537
Description: A graph with (at most) one vertex is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.)
Assertion
Ref Expression
1conngr ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph)

Proof of Theorem 1conngr
Dummy variables 𝑓 𝑘 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snidg 4399 . . . . . . . . . 10 (𝑁 ∈ V → 𝑁 ∈ {𝑁})
21adantr 473 . . . . . . . . 9 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝑁 ∈ {𝑁})
3 eleq2 2868 . . . . . . . . . 10 ((Vtx‘𝐺) = {𝑁} → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁 ∈ {𝑁}))
43ad2antll 721 . . . . . . . . 9 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁 ∈ {𝑁}))
52, 4mpbird 249 . . . . . . . 8 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝑁 ∈ (Vtx‘𝐺))
6 eqid 2800 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
760pthonv 27472 . . . . . . . 8 (𝑁 ∈ (Vtx‘𝐺) → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)
85, 7syl 17 . . . . . . 7 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)
9 oveq2 6887 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝑁(PathsOn‘𝐺)𝑛) = (𝑁(PathsOn‘𝐺)𝑁))
109breqd 4855 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
11102exbidv 2020 . . . . . . . . 9 (𝑛 = 𝑁 → (∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
1211ralsng 4410 . . . . . . . 8 (𝑁 ∈ V → (∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
1312adantr 473 . . . . . . 7 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
148, 13mpbird 249 . . . . . 6 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝)
15 oveq1 6886 . . . . . . . . . . 11 (𝑘 = 𝑁 → (𝑘(PathsOn‘𝐺)𝑛) = (𝑁(PathsOn‘𝐺)𝑛))
1615breqd 4855 . . . . . . . . . 10 (𝑘 = 𝑁 → (𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
17162exbidv 2020 . . . . . . . . 9 (𝑘 = 𝑁 → (∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
1817ralbidv 3168 . . . . . . . 8 (𝑘 = 𝑁 → (∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
1918ralsng 4410 . . . . . . 7 (𝑁 ∈ V → (∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
2019adantr 473 . . . . . 6 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
2114, 20mpbird 249 . . . . 5 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
22 id 22 . . . . . . 7 ((Vtx‘𝐺) = {𝑁} → (Vtx‘𝐺) = {𝑁})
23 raleq 3322 . . . . . . 7 ((Vtx‘𝐺) = {𝑁} → (∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2422, 23raleqbidv 3336 . . . . . 6 ((Vtx‘𝐺) = {𝑁} → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2524ad2antll 721 . . . . 5 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2621, 25mpbird 249 . . . 4 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
276isconngr 27532 . . . . 5 (𝐺𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2827ad2antrl 720 . . . 4 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2926, 28mpbird 249 . . 3 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝐺 ∈ ConnGraph)
3029ex 402 . 2 (𝑁 ∈ V → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph))
31 snprc 4443 . . 3 𝑁 ∈ V ↔ {𝑁} = ∅)
32 eqeq2 2811 . . . . 5 ({𝑁} = ∅ → ((Vtx‘𝐺) = {𝑁} ↔ (Vtx‘𝐺) = ∅))
3332anbi2d 623 . . . 4 ({𝑁} = ∅ → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) ↔ (𝐺𝑊 ∧ (Vtx‘𝐺) = ∅)))
34 0vconngr 27536 . . . 4 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ ConnGraph)
3533, 34syl6bi 245 . . 3 ({𝑁} = ∅ → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph))
3631, 35sylbi 209 . 2 𝑁 ∈ V → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph))
3730, 36pm2.61i 177 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385   = wceq 1653  wex 1875  wcel 2157  wral 3090  Vcvv 3386  c0 4116  {csn 4369   class class class wbr 4844  cfv 6102  (class class class)co 6879  Vtxcvtx 26230  PathsOncpthson 26967  ConnGraphcconngr 27529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-ifp 1087  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-om 7301  df-1st 7402  df-2nd 7403  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-1o 7800  df-er 7983  df-map 8098  df-pm 8099  df-en 8197  df-dom 8198  df-sdom 8199  df-fin 8200  df-card 9052  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-nn 11314  df-n0 11580  df-z 11666  df-uz 11930  df-fz 12580  df-fzo 12720  df-hash 13370  df-word 13534  df-wlks 26848  df-wlkson 26849  df-trls 26944  df-trlson 26945  df-pths 26969  df-pthson 26971  df-conngr 27530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator