MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1conngr Structured version   Visualization version   GIF version

Theorem 1conngr 30217
Description: A graph with (at most) one vertex is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.)
Assertion
Ref Expression
1conngr ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph)

Proof of Theorem 1conngr
Dummy variables 𝑓 𝑘 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snidg 4682 . . . . . . . . . 10 (𝑁 ∈ V → 𝑁 ∈ {𝑁})
21adantr 480 . . . . . . . . 9 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝑁 ∈ {𝑁})
3 eleq2 2827 . . . . . . . . . 10 ((Vtx‘𝐺) = {𝑁} → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁 ∈ {𝑁}))
43ad2antll 728 . . . . . . . . 9 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁 ∈ {𝑁}))
52, 4mpbird 257 . . . . . . . 8 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝑁 ∈ (Vtx‘𝐺))
6 eqid 2734 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
760pthonv 30152 . . . . . . . 8 (𝑁 ∈ (Vtx‘𝐺) → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)
85, 7syl 17 . . . . . . 7 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)
9 oveq2 7453 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝑁(PathsOn‘𝐺)𝑛) = (𝑁(PathsOn‘𝐺)𝑁))
109breqd 5180 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
11102exbidv 1923 . . . . . . . . 9 (𝑛 = 𝑁 → (∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
1211ralsng 4697 . . . . . . . 8 (𝑁 ∈ V → (∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
1312adantr 480 . . . . . . 7 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
148, 13mpbird 257 . . . . . 6 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝)
15 oveq1 7452 . . . . . . . . . . 11 (𝑘 = 𝑁 → (𝑘(PathsOn‘𝐺)𝑛) = (𝑁(PathsOn‘𝐺)𝑛))
1615breqd 5180 . . . . . . . . . 10 (𝑘 = 𝑁 → (𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
17162exbidv 1923 . . . . . . . . 9 (𝑘 = 𝑁 → (∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
1817ralbidv 3180 . . . . . . . 8 (𝑘 = 𝑁 → (∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
1918ralsng 4697 . . . . . . 7 (𝑁 ∈ V → (∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
2019adantr 480 . . . . . 6 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
2114, 20mpbird 257 . . . . 5 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
22 raleq 3326 . . . . . . 7 ((Vtx‘𝐺) = {𝑁} → (∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2322raleqbi1dv 3341 . . . . . 6 ((Vtx‘𝐺) = {𝑁} → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2423ad2antll 728 . . . . 5 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2521, 24mpbird 257 . . . 4 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
266isconngr 30212 . . . . 5 (𝐺𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2726ad2antrl 727 . . . 4 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2825, 27mpbird 257 . . 3 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝐺 ∈ ConnGraph)
2928ex 412 . 2 (𝑁 ∈ V → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph))
30 snprc 4742 . . 3 𝑁 ∈ V ↔ {𝑁} = ∅)
31 eqeq2 2746 . . . . 5 ({𝑁} = ∅ → ((Vtx‘𝐺) = {𝑁} ↔ (Vtx‘𝐺) = ∅))
3231anbi2d 629 . . . 4 ({𝑁} = ∅ → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) ↔ (𝐺𝑊 ∧ (Vtx‘𝐺) = ∅)))
33 0vconngr 30216 . . . 4 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ ConnGraph)
3432, 33biimtrdi 253 . . 3 ({𝑁} = ∅ → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph))
3530, 34sylbi 217 . 2 𝑁 ∈ V → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph))
3629, 35pm2.61i 182 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2103  wral 3063  Vcvv 3482  c0 4347  {csn 4648   class class class wbr 5169  cfv 6572  (class class class)co 7445  Vtxcvtx 29022  PathsOncpthson 29741  ConnGraphcconngr 30209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-er 8759  df-map 8882  df-pm 8883  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-card 10004  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-nn 12290  df-n0 12550  df-z 12636  df-uz 12900  df-fz 13564  df-fzo 13708  df-hash 14376  df-word 14559  df-wlks 29626  df-wlkson 29627  df-trls 29719  df-trlson 29720  df-pths 29743  df-pthson 29745  df-conngr 30210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator