MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1conngr Structured version   Visualization version   GIF version

Theorem 1conngr 30160
Description: A graph with (at most) one vertex is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.)
Assertion
Ref Expression
1conngr ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph)

Proof of Theorem 1conngr
Dummy variables 𝑓 𝑘 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snidg 4642 . . . . . . . . . 10 (𝑁 ∈ V → 𝑁 ∈ {𝑁})
21adantr 480 . . . . . . . . 9 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝑁 ∈ {𝑁})
3 eleq2 2822 . . . . . . . . . 10 ((Vtx‘𝐺) = {𝑁} → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁 ∈ {𝑁}))
43ad2antll 729 . . . . . . . . 9 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁 ∈ {𝑁}))
52, 4mpbird 257 . . . . . . . 8 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝑁 ∈ (Vtx‘𝐺))
6 eqid 2734 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
760pthonv 30095 . . . . . . . 8 (𝑁 ∈ (Vtx‘𝐺) → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)
85, 7syl 17 . . . . . . 7 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)
9 oveq2 7422 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝑁(PathsOn‘𝐺)𝑛) = (𝑁(PathsOn‘𝐺)𝑁))
109breqd 5136 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
11102exbidv 1923 . . . . . . . . 9 (𝑛 = 𝑁 → (∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
1211ralsng 4657 . . . . . . . 8 (𝑁 ∈ V → (∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
1312adantr 480 . . . . . . 7 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝))
148, 13mpbird 257 . . . . . 6 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝)
15 oveq1 7421 . . . . . . . . . . 11 (𝑘 = 𝑁 → (𝑘(PathsOn‘𝐺)𝑛) = (𝑁(PathsOn‘𝐺)𝑛))
1615breqd 5136 . . . . . . . . . 10 (𝑘 = 𝑁 → (𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
17162exbidv 1923 . . . . . . . . 9 (𝑘 = 𝑁 → (∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
1817ralbidv 3165 . . . . . . . 8 (𝑘 = 𝑁 → (∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
1918ralsng 4657 . . . . . . 7 (𝑁 ∈ V → (∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
2019adantr 480 . . . . . 6 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝))
2114, 20mpbird 257 . . . . 5 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
22 raleq 3307 . . . . . . 7 ((Vtx‘𝐺) = {𝑁} → (∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2322raleqbi1dv 3322 . . . . . 6 ((Vtx‘𝐺) = {𝑁} → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2423ad2antll 729 . . . . 5 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2521, 24mpbird 257 . . . 4 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
266isconngr 30155 . . . . 5 (𝐺𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2726ad2antrl 728 . . . 4 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
2825, 27mpbird 257 . . 3 ((𝑁 ∈ V ∧ (𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝐺 ∈ ConnGraph)
2928ex 412 . 2 (𝑁 ∈ V → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph))
30 snprc 4699 . . 3 𝑁 ∈ V ↔ {𝑁} = ∅)
31 eqeq2 2746 . . . . 5 ({𝑁} = ∅ → ((Vtx‘𝐺) = {𝑁} ↔ (Vtx‘𝐺) = ∅))
3231anbi2d 630 . . . 4 ({𝑁} = ∅ → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) ↔ (𝐺𝑊 ∧ (Vtx‘𝐺) = ∅)))
33 0vconngr 30159 . . . 4 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ ConnGraph)
3432, 33biimtrdi 253 . . 3 ({𝑁} = ∅ → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph))
3530, 34sylbi 217 . 2 𝑁 ∈ V → ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph))
3629, 35pm2.61i 182 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wral 3050  Vcvv 3464  c0 4315  {csn 4608   class class class wbr 5125  cfv 6542  (class class class)co 7414  Vtxcvtx 28960  PathsOncpthson 29679  ConnGraphcconngr 30152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-map 8851  df-pm 8852  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-n0 12511  df-z 12598  df-uz 12862  df-fz 13531  df-fzo 13678  df-hash 14353  df-word 14536  df-wlks 29564  df-wlkson 29565  df-trls 29657  df-trlson 29658  df-pths 29681  df-pthson 29683  df-conngr 30153
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator