Step | Hyp | Ref
| Expression |
1 | | snidg 4595 |
. . . . . . . . . 10
⊢ (𝑁 ∈ V → 𝑁 ∈ {𝑁}) |
2 | 1 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝑁 ∈ {𝑁}) |
3 | | eleq2 2827 |
. . . . . . . . . 10
⊢
((Vtx‘𝐺) =
{𝑁} → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁 ∈ {𝑁})) |
4 | 3 | ad2antll 726 |
. . . . . . . . 9
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁 ∈ {𝑁})) |
5 | 2, 4 | mpbird 256 |
. . . . . . . 8
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝑁 ∈ (Vtx‘𝐺)) |
6 | | eqid 2738 |
. . . . . . . . 9
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
7 | 6 | 0pthonv 28493 |
. . . . . . . 8
⊢ (𝑁 ∈ (Vtx‘𝐺) → ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝) |
8 | 5, 7 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝) |
9 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑁 → (𝑁(PathsOn‘𝐺)𝑛) = (𝑁(PathsOn‘𝐺)𝑁)) |
10 | 9 | breqd 5085 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → (𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)) |
11 | 10 | 2exbidv 1927 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → (∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)) |
12 | 11 | ralsng 4609 |
. . . . . . . 8
⊢ (𝑁 ∈ V → (∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)) |
13 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑁)𝑝)) |
14 | 8, 13 | mpbird 256 |
. . . . . 6
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝) |
15 | | oveq1 7282 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑁 → (𝑘(PathsOn‘𝐺)𝑛) = (𝑁(PathsOn‘𝐺)𝑛)) |
16 | 15 | breqd 5085 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑁 → (𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝)) |
17 | 16 | 2exbidv 1927 |
. . . . . . . . 9
⊢ (𝑘 = 𝑁 → (∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝)) |
18 | 17 | ralbidv 3112 |
. . . . . . . 8
⊢ (𝑘 = 𝑁 → (∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝)) |
19 | 18 | ralsng 4609 |
. . . . . . 7
⊢ (𝑁 ∈ V → (∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝)) |
20 | 19 | adantr 481 |
. . . . . 6
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑛)𝑝)) |
21 | 14, 20 | mpbird 256 |
. . . . 5
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) |
22 | | raleq 3342 |
. . . . . . 7
⊢
((Vtx‘𝐺) =
{𝑁} → (∀𝑛 ∈ (Vtx‘𝐺)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
23 | 22 | raleqbi1dv 3340 |
. . . . . 6
⊢
((Vtx‘𝐺) =
{𝑁} → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
24 | 23 | ad2antll 726 |
. . . . 5
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑘 ∈ {𝑁}∀𝑛 ∈ {𝑁}∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
25 | 21, 24 | mpbird 256 |
. . . 4
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝) |
26 | 6 | isconngr 28553 |
. . . . 5
⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
27 | 26 | ad2antrl 725 |
. . . 4
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
28 | 25, 27 | mpbird 256 |
. . 3
⊢ ((𝑁 ∈ V ∧ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁})) → 𝐺 ∈ ConnGraph) |
29 | 28 | ex 413 |
. 2
⊢ (𝑁 ∈ V → ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph)) |
30 | | snprc 4653 |
. . 3
⊢ (¬
𝑁 ∈ V ↔ {𝑁} = ∅) |
31 | | eqeq2 2750 |
. . . . 5
⊢ ({𝑁} = ∅ →
((Vtx‘𝐺) = {𝑁} ↔ (Vtx‘𝐺) = ∅)) |
32 | 31 | anbi2d 629 |
. . . 4
⊢ ({𝑁} = ∅ → ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁}) ↔ (𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅))) |
33 | | 0vconngr 28557 |
. . . 4
⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ ConnGraph) |
34 | 32, 33 | syl6bi 252 |
. . 3
⊢ ({𝑁} = ∅ → ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph)) |
35 | 30, 34 | sylbi 216 |
. 2
⊢ (¬
𝑁 ∈ V → ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph)) |
36 | 29, 35 | pm2.61i 182 |
1
⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ ConnGraph) |