![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0conngr | Structured version Visualization version GIF version |
Description: A graph without vertices is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
Ref | Expression |
---|---|
0conngr | β’ β β ConnGraph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4512 | . 2 β’ βπ β β βπ β β βπβπ π(π(PathsOnββ )π)π | |
2 | 0ex 5307 | . . 3 β’ β β V | |
3 | vtxval0 28733 | . . . . 5 β’ (Vtxββ ) = β | |
4 | 3 | eqcomi 2740 | . . . 4 β’ β = (Vtxββ ) |
5 | 4 | isconngr 29876 | . . 3 β’ (β β V β (β β ConnGraph β βπ β β βπ β β βπβπ π(π(PathsOnββ )π)π)) |
6 | 2, 5 | ax-mp 5 | . 2 β’ (β β ConnGraph β βπ β β βπ β β βπβπ π(π(PathsOnββ )π)π) |
7 | 1, 6 | mpbir 230 | 1 β’ β β ConnGraph |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 βwex 1780 β wcel 2105 βwral 3060 Vcvv 3473 β c0 4322 class class class wbr 5148 βcfv 6543 (class class class)co 7412 Vtxcvtx 28690 PathsOncpthson 29405 ConnGraphcconngr 29873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-1cn 11174 ax-addcl 11176 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-nn 12220 df-slot 17122 df-ndx 17134 df-base 17152 df-vtx 28692 df-conngr 29874 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |