![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0conngr | Structured version Visualization version GIF version |
Description: A graph without vertices is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.) |
Ref | Expression |
---|---|
0conngr | ⊢ ∅ ∈ ConnGraph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 4532 | . 2 ⊢ ∀𝑘 ∈ ∅ ∀𝑛 ∈ ∅ ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘∅)𝑛)𝑝 | |
2 | 0ex 5328 | . . 3 ⊢ ∅ ∈ V | |
3 | vtxval0 29065 | . . . . 5 ⊢ (Vtx‘∅) = ∅ | |
4 | 3 | eqcomi 2743 | . . . 4 ⊢ ∅ = (Vtx‘∅) |
5 | 4 | isconngr 30212 | . . 3 ⊢ (∅ ∈ V → (∅ ∈ ConnGraph ↔ ∀𝑘 ∈ ∅ ∀𝑛 ∈ ∅ ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘∅)𝑛)𝑝)) |
6 | 2, 5 | ax-mp 5 | . 2 ⊢ (∅ ∈ ConnGraph ↔ ∀𝑘 ∈ ∅ ∀𝑛 ∈ ∅ ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘∅)𝑛)𝑝) |
7 | 1, 6 | mpbir 231 | 1 ⊢ ∅ ∈ ConnGraph |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∃wex 1777 ∈ wcel 2103 ∀wral 3063 Vcvv 3482 ∅c0 4347 class class class wbr 5169 ‘cfv 6572 (class class class)co 7445 Vtxcvtx 29022 PathsOncpthson 29741 ConnGraphcconngr 30209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-1cn 11238 ax-addcl 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-ov 7448 df-om 7900 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-nn 12290 df-slot 17224 df-ndx 17236 df-base 17254 df-vtx 29024 df-conngr 30210 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |