| Step | Hyp | Ref
| Expression |
| 1 | | df-conngr 30153 |
. . 3
⊢ ConnGraph
= {𝑔 ∣
[(Vtx‘𝑔) /
𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} |
| 2 | 1 | eleq2i 2825 |
. 2
⊢ (𝐺 ∈ ConnGraph ↔ 𝐺 ∈ {𝑔 ∣ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}) |
| 3 | | fvex 6900 |
. . . . . 6
⊢
(Vtx‘𝑔) ∈
V |
| 4 | | raleq 3307 |
. . . . . . 7
⊢ (𝑣 = (Vtx‘𝑔) → (∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
| 5 | 4 | raleqbi1dv 3322 |
. . . . . 6
⊢ (𝑣 = (Vtx‘𝑔) → (∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
| 6 | 3, 5 | sbcie 3814 |
. . . . 5
⊢
([(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) |
| 7 | 6 | abbii 2801 |
. . . 4
⊢ {𝑔 ∣
[(Vtx‘𝑔) /
𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} |
| 8 | 7 | eleq2i 2825 |
. . 3
⊢ (𝐺 ∈ {𝑔 ∣ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ 𝐺 ∈ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}) |
| 9 | | fveq2 6887 |
. . . . . 6
⊢ (ℎ = 𝐺 → (Vtx‘ℎ) = (Vtx‘𝐺)) |
| 10 | | isconngr.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
| 11 | 9, 10 | eqtr4di 2787 |
. . . . 5
⊢ (ℎ = 𝐺 → (Vtx‘ℎ) = 𝑉) |
| 12 | | fveq2 6887 |
. . . . . . . . 9
⊢ (ℎ = 𝐺 → (PathsOn‘ℎ) = (PathsOn‘𝐺)) |
| 13 | 12 | oveqd 7431 |
. . . . . . . 8
⊢ (ℎ = 𝐺 → (𝑘(PathsOn‘ℎ)𝑛) = (𝑘(PathsOn‘𝐺)𝑛)) |
| 14 | 13 | breqd 5136 |
. . . . . . 7
⊢ (ℎ = 𝐺 → (𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝 ↔ 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 15 | 14 | 2exbidv 1923 |
. . . . . 6
⊢ (ℎ = 𝐺 → (∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 16 | 11, 15 | raleqbidv 3330 |
. . . . 5
⊢ (ℎ = 𝐺 → (∀𝑛 ∈ (Vtx‘ℎ)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝 ↔ ∀𝑛 ∈ 𝑉 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 17 | 11, 16 | raleqbidv 3330 |
. . . 4
⊢ (ℎ = 𝐺 → (∀𝑘 ∈ (Vtx‘ℎ)∀𝑛 ∈ (Vtx‘ℎ)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝 ↔ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ 𝑉 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 18 | | fveq2 6887 |
. . . . . 6
⊢ (𝑔 = ℎ → (Vtx‘𝑔) = (Vtx‘ℎ)) |
| 19 | | fveq2 6887 |
. . . . . . . . . 10
⊢ (𝑔 = ℎ → (PathsOn‘𝑔) = (PathsOn‘ℎ)) |
| 20 | 19 | oveqd 7431 |
. . . . . . . . 9
⊢ (𝑔 = ℎ → (𝑘(PathsOn‘𝑔)𝑛) = (𝑘(PathsOn‘ℎ)𝑛)) |
| 21 | 20 | breqd 5136 |
. . . . . . . 8
⊢ (𝑔 = ℎ → (𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝)) |
| 22 | 21 | 2exbidv 1923 |
. . . . . . 7
⊢ (𝑔 = ℎ → (∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝)) |
| 23 | 18, 22 | raleqbidv 3330 |
. . . . . 6
⊢ (𝑔 = ℎ → (∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (Vtx‘ℎ)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝)) |
| 24 | 18, 23 | raleqbidv 3330 |
. . . . 5
⊢ (𝑔 = ℎ → (∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘ℎ)∀𝑛 ∈ (Vtx‘ℎ)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝)) |
| 25 | 24 | cbvabv 2804 |
. . . 4
⊢ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = {ℎ ∣ ∀𝑘 ∈ (Vtx‘ℎ)∀𝑛 ∈ (Vtx‘ℎ)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝} |
| 26 | 17, 25 | elab2g 3664 |
. . 3
⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ 𝑉 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 27 | 8, 26 | bitrid 283 |
. 2
⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ {𝑔 ∣ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ 𝑉 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
| 28 | 2, 27 | bitrid 283 |
1
⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ 𝑉 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |