Step | Hyp | Ref
| Expression |
1 | | df-conngr 28530 |
. . 3
⊢ ConnGraph
= {𝑔 ∣
[(Vtx‘𝑔) /
𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} |
2 | 1 | eleq2i 2831 |
. 2
⊢ (𝐺 ∈ ConnGraph ↔ 𝐺 ∈ {𝑔 ∣ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}) |
3 | | fvex 6781 |
. . . . . 6
⊢
(Vtx‘𝑔) ∈
V |
4 | | raleq 3340 |
. . . . . . 7
⊢ (𝑣 = (Vtx‘𝑔) → (∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
5 | 4 | raleqbi1dv 3338 |
. . . . . 6
⊢ (𝑣 = (Vtx‘𝑔) → (∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)) |
6 | 3, 5 | sbcie 3762 |
. . . . 5
⊢
([(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝) |
7 | 6 | abbii 2809 |
. . . 4
⊢ {𝑔 ∣
[(Vtx‘𝑔) /
𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} |
8 | 7 | eleq2i 2831 |
. . 3
⊢ (𝐺 ∈ {𝑔 ∣ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ 𝐺 ∈ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}) |
9 | | fveq2 6768 |
. . . . . 6
⊢ (ℎ = 𝐺 → (Vtx‘ℎ) = (Vtx‘𝐺)) |
10 | | isconngr.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
11 | 9, 10 | eqtr4di 2797 |
. . . . 5
⊢ (ℎ = 𝐺 → (Vtx‘ℎ) = 𝑉) |
12 | | fveq2 6768 |
. . . . . . . . 9
⊢ (ℎ = 𝐺 → (PathsOn‘ℎ) = (PathsOn‘𝐺)) |
13 | 12 | oveqd 7285 |
. . . . . . . 8
⊢ (ℎ = 𝐺 → (𝑘(PathsOn‘ℎ)𝑛) = (𝑘(PathsOn‘𝐺)𝑛)) |
14 | 13 | breqd 5089 |
. . . . . . 7
⊢ (ℎ = 𝐺 → (𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝 ↔ 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
15 | 14 | 2exbidv 1930 |
. . . . . 6
⊢ (ℎ = 𝐺 → (∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
16 | 11, 15 | raleqbidv 3334 |
. . . . 5
⊢ (ℎ = 𝐺 → (∀𝑛 ∈ (Vtx‘ℎ)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝 ↔ ∀𝑛 ∈ 𝑉 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
17 | 11, 16 | raleqbidv 3334 |
. . . 4
⊢ (ℎ = 𝐺 → (∀𝑘 ∈ (Vtx‘ℎ)∀𝑛 ∈ (Vtx‘ℎ)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝 ↔ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ 𝑉 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
18 | | fveq2 6768 |
. . . . . 6
⊢ (𝑔 = ℎ → (Vtx‘𝑔) = (Vtx‘ℎ)) |
19 | | fveq2 6768 |
. . . . . . . . . 10
⊢ (𝑔 = ℎ → (PathsOn‘𝑔) = (PathsOn‘ℎ)) |
20 | 19 | oveqd 7285 |
. . . . . . . . 9
⊢ (𝑔 = ℎ → (𝑘(PathsOn‘𝑔)𝑛) = (𝑘(PathsOn‘ℎ)𝑛)) |
21 | 20 | breqd 5089 |
. . . . . . . 8
⊢ (𝑔 = ℎ → (𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝)) |
22 | 21 | 2exbidv 1930 |
. . . . . . 7
⊢ (𝑔 = ℎ → (∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝)) |
23 | 18, 22 | raleqbidv 3334 |
. . . . . 6
⊢ (𝑔 = ℎ → (∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (Vtx‘ℎ)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝)) |
24 | 18, 23 | raleqbidv 3334 |
. . . . 5
⊢ (𝑔 = ℎ → (∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘ℎ)∀𝑛 ∈ (Vtx‘ℎ)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝)) |
25 | 24 | cbvabv 2812 |
. . . 4
⊢ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = {ℎ ∣ ∀𝑘 ∈ (Vtx‘ℎ)∀𝑛 ∈ (Vtx‘ℎ)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘ℎ)𝑛)𝑝} |
26 | 17, 25 | elab2g 3612 |
. . 3
⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ 𝑉 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
27 | 8, 26 | syl5bb 282 |
. 2
⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ {𝑔 ∣ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ 𝑉 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |
28 | 2, 27 | syl5bb 282 |
1
⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ 𝑉 ∀𝑛 ∈ 𝑉 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)) |