MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isconngr Structured version   Visualization version   GIF version

Theorem isconngr 30212
Description: The property of being a connected graph. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.)
Hypothesis
Ref Expression
isconngr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isconngr (𝐺𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
Distinct variable groups:   𝑓,𝑘,𝑛,𝑝,𝐺   𝑘,𝑉,𝑛
Allowed substitution hints:   𝑉(𝑓,𝑝)   𝑊(𝑓,𝑘,𝑛,𝑝)

Proof of Theorem isconngr
Dummy variables 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-conngr 30210 . . 3 ConnGraph = {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}
21eleq2i 2830 . 2 (𝐺 ∈ ConnGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝})
3 fvex 6932 . . . . . 6 (Vtx‘𝑔) ∈ V
4 raleq 3326 . . . . . . 7 (𝑣 = (Vtx‘𝑔) → (∀𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
54raleqbi1dv 3341 . . . . . 6 (𝑣 = (Vtx‘𝑔) → (∀𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
63, 5sbcie 3842 . . . . 5 ([(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)
76abbii 2806 . . . 4 {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}
87eleq2i 2830 . . 3 (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ 𝐺 ∈ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝})
9 fveq2 6919 . . . . . 6 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
10 isconngr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
119, 10eqtr4di 2792 . . . . 5 ( = 𝐺 → (Vtx‘) = 𝑉)
12 fveq2 6919 . . . . . . . . 9 ( = 𝐺 → (PathsOn‘) = (PathsOn‘𝐺))
1312oveqd 7462 . . . . . . . 8 ( = 𝐺 → (𝑘(PathsOn‘)𝑛) = (𝑘(PathsOn‘𝐺)𝑛))
1413breqd 5180 . . . . . . 7 ( = 𝐺 → (𝑓(𝑘(PathsOn‘)𝑛)𝑝𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
15142exbidv 1923 . . . . . 6 ( = 𝐺 → (∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
1611, 15raleqbidv 3349 . . . . 5 ( = 𝐺 → (∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝 ↔ ∀𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
1711, 16raleqbidv 3349 . . . 4 ( = 𝐺 → (∀𝑘 ∈ (Vtx‘)∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝 ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
18 fveq2 6919 . . . . . 6 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
19 fveq2 6919 . . . . . . . . . 10 (𝑔 = → (PathsOn‘𝑔) = (PathsOn‘))
2019oveqd 7462 . . . . . . . . 9 (𝑔 = → (𝑘(PathsOn‘𝑔)𝑛) = (𝑘(PathsOn‘)𝑛))
2120breqd 5180 . . . . . . . 8 (𝑔 = → (𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝𝑓(𝑘(PathsOn‘)𝑛)𝑝))
22212exbidv 1923 . . . . . . 7 (𝑔 = → (∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝))
2318, 22raleqbidv 3349 . . . . . 6 (𝑔 = → (∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝))
2418, 23raleqbidv 3349 . . . . 5 (𝑔 = → (∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘)∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝))
2524cbvabv 2809 . . . 4 {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = { ∣ ∀𝑘 ∈ (Vtx‘)∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝}
2617, 25elab2g 3691 . . 3 (𝐺𝑊 → (𝐺 ∈ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
278, 26bitrid 283 . 2 (𝐺𝑊 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
282, 27bitrid 283 1 (𝐺𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wex 1777  wcel 2103  {cab 2711  wral 3063  [wsbc 3798   class class class wbr 5169  cfv 6572  (class class class)co 7445  Vtxcvtx 29022  PathsOncpthson 29741  ConnGraphcconngr 30209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-ext 2705  ax-nul 5327
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2943  df-ral 3064  df-rex 3073  df-rab 3439  df-v 3484  df-sbc 3799  df-dif 3973  df-un 3975  df-ss 3987  df-nul 4348  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5170  df-iota 6524  df-fv 6580  df-ov 7448  df-conngr 30210
This theorem is referenced by:  0conngr  30215  0vconngr  30216  1conngr  30217  conngrv2edg  30218
  Copyright terms: Public domain W3C validator