Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpomptx2 Structured version   Visualization version   GIF version

Theorem mpomptx2 45728
Description: Express a two-argument function as a one-argument function, or vice-versa. In this version 𝐴(𝑦) is not assumed to be constant w.r.t 𝑦, analogous to mpomptx 7419. (Contributed by AV, 30-Mar-2019.)
Hypothesis
Ref Expression
mpomptx2.1 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
Assertion
Ref Expression
mpomptx2 (𝑧 𝑦𝐵 (𝐴 × {𝑦}) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧   𝑥,𝐶,𝑦   𝑧,𝐷
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐶(𝑧)   𝐷(𝑥,𝑦)

Proof of Theorem mpomptx2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 5165 . 2 (𝑧 𝑦𝐵 (𝐴 × {𝑦}) ↦ 𝐶) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑦𝐵 (𝐴 × {𝑦}) ∧ 𝑤 = 𝐶)}
2 df-mpo 7312 . . 3 (𝑥𝐴, 𝑦𝐵𝐷) = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)}
3 eliunxp2 45727 . . . . . . 7 (𝑧 𝑦𝐵 (𝐴 × {𝑦}) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
43anbi1i 625 . . . . . 6 ((𝑧 𝑦𝐵 (𝐴 × {𝑦}) ∧ 𝑤 = 𝐶) ↔ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶))
5 19.41vv 1952 . . . . . 6 (∃𝑥𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶))
6 anass 470 . . . . . . . 8 (((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)))
7 mpomptx2.1 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
87eqeq2d 2747 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑤 = 𝐶𝑤 = 𝐷))
98anbi2d 630 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
109pm5.32i 576 . . . . . . . 8 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
116, 10bitri 275 . . . . . . 7 (((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
12112exbii 1849 . . . . . 6 (∃𝑥𝑦((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑤 = 𝐶) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
134, 5, 123bitr2i 299 . . . . 5 ((𝑧 𝑦𝐵 (𝐴 × {𝑦}) ∧ 𝑤 = 𝐶) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)))
1413opabbii 5148 . . . 4 {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑦𝐵 (𝐴 × {𝑦}) ∧ 𝑤 = 𝐶)} = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷))}
15 dfoprab2 7365 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)} = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷))}
1614, 15eqtr4i 2767 . . 3 {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑦𝐵 (𝐴 × {𝑦}) ∧ 𝑤 = 𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐷)}
172, 16eqtr4i 2767 . 2 (𝑥𝐴, 𝑦𝐵𝐷) = {⟨𝑧, 𝑤⟩ ∣ (𝑧 𝑦𝐵 (𝐴 × {𝑦}) ∧ 𝑤 = 𝐶)}
181, 17eqtr4i 2767 1 (𝑧 𝑦𝐵 (𝐴 × {𝑦}) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wex 1779  wcel 2104  {csn 4565  cop 4571   ciun 4931  {copab 5143  cmpt 5164   × cxp 5598  {coprab 7308  cmpo 7309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-iun 4933  df-opab 5144  df-mpt 5165  df-xp 5606  df-rel 5607  df-oprab 7311  df-mpo 7312
This theorem is referenced by:  dmmpossx2  45730
  Copyright terms: Public domain W3C validator