Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  en2pr Structured version   Visualization version   GIF version

Theorem en2pr 43553
Description: A class is equinumerous to ordinal two iff it is a pair of distinct sets. (Contributed by RP, 11-Oct-2023.)
Assertion
Ref Expression
en2pr (𝐴 ≈ 2o ↔ ∃𝑥𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem en2pr
StepHypRef Expression
1 en2 9322 . . 3 (𝐴 ≈ 2o → ∃𝑥𝑦 𝐴 = {𝑥, 𝑦})
21pm4.71ri 560 . 2 (𝐴 ≈ 2o ↔ (∃𝑥𝑦 𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o))
3 19.41vv 1950 . 2 (∃𝑥𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o) ↔ (∃𝑥𝑦 𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o))
4 breq1 5154 . . . . 5 (𝐴 = {𝑥, 𝑦} → (𝐴 ≈ 2o ↔ {𝑥, 𝑦} ≈ 2o))
5 pr2ne 10051 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ≈ 2o𝑥𝑦))
65el2v 3488 . . . . 5 ({𝑥, 𝑦} ≈ 2o𝑥𝑦)
74, 6bitrdi 287 . . . 4 (𝐴 = {𝑥, 𝑦} → (𝐴 ≈ 2o𝑥𝑦))
87pm5.32i 574 . . 3 ((𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o) ↔ (𝐴 = {𝑥, 𝑦} ∧ 𝑥𝑦))
982exbii 1848 . 2 (∃𝑥𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o) ↔ ∃𝑥𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥𝑦))
102, 3, 93bitr2i 299 1 (𝐴 ≈ 2o ↔ ∃𝑥𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wex 1778  wne 2940  Vcvv 3481  {cpr 4636   class class class wbr 5151  2oc2o 8508  cen 8990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-ord 6395  df-on 6396  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-1o 8514  df-2o 8515  df-en 8994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator