| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > en2pr | Structured version Visualization version GIF version | ||
| Description: A class is equinumerous to ordinal two iff it is a pair of distinct sets. (Contributed by RP, 11-Oct-2023.) |
| Ref | Expression |
|---|---|
| en2pr | ⊢ (𝐴 ≈ 2o ↔ ∃𝑥∃𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥 ≠ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2 9184 | . . 3 ⊢ (𝐴 ≈ 2o → ∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦}) | |
| 2 | 1 | pm4.71ri 560 | . 2 ⊢ (𝐴 ≈ 2o ↔ (∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o)) |
| 3 | 19.41vv 1950 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o) ↔ (∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o)) | |
| 4 | breq1 5098 | . . . . 5 ⊢ (𝐴 = {𝑥, 𝑦} → (𝐴 ≈ 2o ↔ {𝑥, 𝑦} ≈ 2o)) | |
| 5 | pr2ne 9918 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ≈ 2o ↔ 𝑥 ≠ 𝑦)) | |
| 6 | 5 | el2v 3445 | . . . . 5 ⊢ ({𝑥, 𝑦} ≈ 2o ↔ 𝑥 ≠ 𝑦) |
| 7 | 4, 6 | bitrdi 287 | . . . 4 ⊢ (𝐴 = {𝑥, 𝑦} → (𝐴 ≈ 2o ↔ 𝑥 ≠ 𝑦)) |
| 8 | 7 | pm5.32i 574 | . . 3 ⊢ ((𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o) ↔ (𝐴 = {𝑥, 𝑦} ∧ 𝑥 ≠ 𝑦)) |
| 9 | 8 | 2exbii 1849 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o) ↔ ∃𝑥∃𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥 ≠ 𝑦)) |
| 10 | 2, 3, 9 | 3bitr2i 299 | 1 ⊢ (𝐴 ≈ 2o ↔ ∃𝑥∃𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥 ≠ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ≠ wne 2925 Vcvv 3438 {cpr 4581 class class class wbr 5095 2oc2o 8389 ≈ cen 8876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-1o 8395 df-2o 8396 df-en 8880 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |