![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > en2pr | Structured version Visualization version GIF version |
Description: A class is equinumerous to ordinal two iff it is a pair of distinct sets. (Contributed by RP, 11-Oct-2023.) |
Ref | Expression |
---|---|
en2pr | ⊢ (𝐴 ≈ 2o ↔ ∃𝑥∃𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥 ≠ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2 9322 | . . 3 ⊢ (𝐴 ≈ 2o → ∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦}) | |
2 | 1 | pm4.71ri 560 | . 2 ⊢ (𝐴 ≈ 2o ↔ (∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o)) |
3 | 19.41vv 1950 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o) ↔ (∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o)) | |
4 | breq1 5154 | . . . . 5 ⊢ (𝐴 = {𝑥, 𝑦} → (𝐴 ≈ 2o ↔ {𝑥, 𝑦} ≈ 2o)) | |
5 | pr2ne 10051 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ≈ 2o ↔ 𝑥 ≠ 𝑦)) | |
6 | 5 | el2v 3488 | . . . . 5 ⊢ ({𝑥, 𝑦} ≈ 2o ↔ 𝑥 ≠ 𝑦) |
7 | 4, 6 | bitrdi 287 | . . . 4 ⊢ (𝐴 = {𝑥, 𝑦} → (𝐴 ≈ 2o ↔ 𝑥 ≠ 𝑦)) |
8 | 7 | pm5.32i 574 | . . 3 ⊢ ((𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o) ↔ (𝐴 = {𝑥, 𝑦} ∧ 𝑥 ≠ 𝑦)) |
9 | 8 | 2exbii 1848 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o) ↔ ∃𝑥∃𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥 ≠ 𝑦)) |
10 | 2, 3, 9 | 3bitr2i 299 | 1 ⊢ (𝐴 ≈ 2o ↔ ∃𝑥∃𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥 ≠ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ≠ wne 2940 Vcvv 3481 {cpr 4636 class class class wbr 5151 2oc2o 8508 ≈ cen 8990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-ord 6395 df-on 6396 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-1o 8514 df-2o 8515 df-en 8994 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |