Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  en2pr Structured version   Visualization version   GIF version

Theorem en2pr 43511
Description: A class is equinumerous to ordinal two iff it is a pair of distinct sets. (Contributed by RP, 11-Oct-2023.)
Assertion
Ref Expression
en2pr (𝐴 ≈ 2o ↔ ∃𝑥𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem en2pr
StepHypRef Expression
1 en2 9345 . . 3 (𝐴 ≈ 2o → ∃𝑥𝑦 𝐴 = {𝑥, 𝑦})
21pm4.71ri 560 . 2 (𝐴 ≈ 2o ↔ (∃𝑥𝑦 𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o))
3 19.41vv 1950 . 2 (∃𝑥𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o) ↔ (∃𝑥𝑦 𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o))
4 breq1 5169 . . . . 5 (𝐴 = {𝑥, 𝑦} → (𝐴 ≈ 2o ↔ {𝑥, 𝑦} ≈ 2o))
5 pr2ne 10075 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ≈ 2o𝑥𝑦))
65el2v 3495 . . . . 5 ({𝑥, 𝑦} ≈ 2o𝑥𝑦)
74, 6bitrdi 287 . . . 4 (𝐴 = {𝑥, 𝑦} → (𝐴 ≈ 2o𝑥𝑦))
87pm5.32i 574 . . 3 ((𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o) ↔ (𝐴 = {𝑥, 𝑦} ∧ 𝑥𝑦))
982exbii 1847 . 2 (∃𝑥𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o) ↔ ∃𝑥𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥𝑦))
102, 3, 93bitr2i 299 1 (𝐴 ≈ 2o ↔ ∃𝑥𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wex 1777  wne 2946  Vcvv 3488  {cpr 4650   class class class wbr 5166  2oc2o 8518  cen 9002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6400  df-on 6401  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-1o 8524  df-2o 8525  df-en 9006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator