Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  en2pr Structured version   Visualization version   GIF version

Theorem en2pr 43522
Description: A class is equinumerous to ordinal two iff it is a pair of distinct sets. (Contributed by RP, 11-Oct-2023.)
Assertion
Ref Expression
en2pr (𝐴 ≈ 2o ↔ ∃𝑥𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem en2pr
StepHypRef Expression
1 en2 9297 . . 3 (𝐴 ≈ 2o → ∃𝑥𝑦 𝐴 = {𝑥, 𝑦})
21pm4.71ri 560 . 2 (𝐴 ≈ 2o ↔ (∃𝑥𝑦 𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o))
3 19.41vv 1949 . 2 (∃𝑥𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o) ↔ (∃𝑥𝑦 𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o))
4 breq1 5126 . . . . 5 (𝐴 = {𝑥, 𝑦} → (𝐴 ≈ 2o ↔ {𝑥, 𝑦} ≈ 2o))
5 pr2ne 10026 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ≈ 2o𝑥𝑦))
65el2v 3470 . . . . 5 ({𝑥, 𝑦} ≈ 2o𝑥𝑦)
74, 6bitrdi 287 . . . 4 (𝐴 = {𝑥, 𝑦} → (𝐴 ≈ 2o𝑥𝑦))
87pm5.32i 574 . . 3 ((𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o) ↔ (𝐴 = {𝑥, 𝑦} ∧ 𝑥𝑦))
982exbii 1848 . 2 (∃𝑥𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝐴 ≈ 2o) ↔ ∃𝑥𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥𝑦))
102, 3, 93bitr2i 299 1 (𝐴 ≈ 2o ↔ ∃𝑥𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wex 1778  wne 2931  Vcvv 3463  {cpr 4608   class class class wbr 5123  2oc2o 8482  cen 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-1o 8488  df-2o 8489  df-en 8968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator