Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrn5 Structured version   Visualization version   GIF version

Theorem dfrn5 35768
Description: Definition of range in terms of 2nd and image. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
dfrn5 ran 𝐴 = ((2nd ↾ (V × V)) “ 𝐴)

Proof of Theorem dfrn5
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 excom 2163 . . . 4 (∃𝑦𝑝𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)) ↔ ∃𝑝𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)))
2 opex 5427 . . . . . . . 8 𝑦, 𝑧⟩ ∈ V
3 breq1 5113 . . . . . . . . . 10 (𝑝 = ⟨𝑦, 𝑧⟩ → (𝑝2nd 𝑥 ↔ ⟨𝑦, 𝑧⟩2nd 𝑥))
4 eleq1 2817 . . . . . . . . . 10 (𝑝 = ⟨𝑦, 𝑧⟩ → (𝑝𝐴 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴))
53, 4anbi12d 632 . . . . . . . . 9 (𝑝 = ⟨𝑦, 𝑧⟩ → ((𝑝2nd 𝑥𝑝𝐴) ↔ (⟨𝑦, 𝑧⟩2nd 𝑥 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐴)))
6 vex 3454 . . . . . . . . . . . 12 𝑦 ∈ V
7 vex 3454 . . . . . . . . . . . 12 𝑧 ∈ V
86, 7br2ndeq 35766 . . . . . . . . . . 11 (⟨𝑦, 𝑧⟩2nd 𝑥𝑥 = 𝑧)
9 equcom 2018 . . . . . . . . . . 11 (𝑥 = 𝑧𝑧 = 𝑥)
108, 9bitri 275 . . . . . . . . . 10 (⟨𝑦, 𝑧⟩2nd 𝑥𝑧 = 𝑥)
1110anbi1i 624 . . . . . . . . 9 ((⟨𝑦, 𝑧⟩2nd 𝑥 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐴) ↔ (𝑧 = 𝑥 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐴))
125, 11bitrdi 287 . . . . . . . 8 (𝑝 = ⟨𝑦, 𝑧⟩ → ((𝑝2nd 𝑥𝑝𝐴) ↔ (𝑧 = 𝑥 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐴)))
132, 12ceqsexv 3501 . . . . . . 7 (∃𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)) ↔ (𝑧 = 𝑥 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐴))
1413exbii 1848 . . . . . 6 (∃𝑧𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)) ↔ ∃𝑧(𝑧 = 𝑥 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐴))
15 excom 2163 . . . . . 6 (∃𝑧𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)) ↔ ∃𝑝𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)))
16 vex 3454 . . . . . . 7 𝑥 ∈ V
17 opeq2 4841 . . . . . . . 8 (𝑧 = 𝑥 → ⟨𝑦, 𝑧⟩ = ⟨𝑦, 𝑥⟩)
1817eleq1d 2814 . . . . . . 7 (𝑧 = 𝑥 → (⟨𝑦, 𝑧⟩ ∈ 𝐴 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴))
1916, 18ceqsexv 3501 . . . . . 6 (∃𝑧(𝑧 = 𝑥 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴)
2014, 15, 193bitr3ri 302 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ 𝐴 ↔ ∃𝑝𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)))
2120exbii 1848 . . . 4 (∃𝑦𝑦, 𝑥⟩ ∈ 𝐴 ↔ ∃𝑦𝑝𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)))
22 ancom 460 . . . . . 6 ((𝑝𝐴𝑝(2nd ↾ (V × V))𝑥) ↔ (𝑝(2nd ↾ (V × V))𝑥𝑝𝐴))
23 anass 468 . . . . . . 7 (((∃𝑦𝑧 𝑝 = ⟨𝑦, 𝑧⟩ ∧ 𝑝2nd 𝑥) ∧ 𝑝𝐴) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)))
2416brresi 5962 . . . . . . . . 9 (𝑝(2nd ↾ (V × V))𝑥 ↔ (𝑝 ∈ (V × V) ∧ 𝑝2nd 𝑥))
25 elvv 5716 . . . . . . . . . 10 (𝑝 ∈ (V × V) ↔ ∃𝑦𝑧 𝑝 = ⟨𝑦, 𝑧⟩)
2625anbi1i 624 . . . . . . . . 9 ((𝑝 ∈ (V × V) ∧ 𝑝2nd 𝑥) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑦, 𝑧⟩ ∧ 𝑝2nd 𝑥))
2724, 26bitri 275 . . . . . . . 8 (𝑝(2nd ↾ (V × V))𝑥 ↔ (∃𝑦𝑧 𝑝 = ⟨𝑦, 𝑧⟩ ∧ 𝑝2nd 𝑥))
2827anbi1i 624 . . . . . . 7 ((𝑝(2nd ↾ (V × V))𝑥𝑝𝐴) ↔ ((∃𝑦𝑧 𝑝 = ⟨𝑦, 𝑧⟩ ∧ 𝑝2nd 𝑥) ∧ 𝑝𝐴))
29 19.41vv 1950 . . . . . . 7 (∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)))
3023, 28, 293bitr4i 303 . . . . . 6 ((𝑝(2nd ↾ (V × V))𝑥𝑝𝐴) ↔ ∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)))
3122, 30bitri 275 . . . . 5 ((𝑝𝐴𝑝(2nd ↾ (V × V))𝑥) ↔ ∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)))
3231exbii 1848 . . . 4 (∃𝑝(𝑝𝐴𝑝(2nd ↾ (V × V))𝑥) ↔ ∃𝑝𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)))
331, 21, 323bitr4i 303 . . 3 (∃𝑦𝑦, 𝑥⟩ ∈ 𝐴 ↔ ∃𝑝(𝑝𝐴𝑝(2nd ↾ (V × V))𝑥))
3416elrn2 5859 . . 3 (𝑥 ∈ ran 𝐴 ↔ ∃𝑦𝑦, 𝑥⟩ ∈ 𝐴)
3516elima2 6040 . . 3 (𝑥 ∈ ((2nd ↾ (V × V)) “ 𝐴) ↔ ∃𝑝(𝑝𝐴𝑝(2nd ↾ (V × V))𝑥))
3633, 34, 353bitr4i 303 . 2 (𝑥 ∈ ran 𝐴𝑥 ∈ ((2nd ↾ (V × V)) “ 𝐴))
3736eqriv 2727 1 ran 𝐴 = ((2nd ↾ (V × V)) “ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  cop 4598   class class class wbr 5110   × cxp 5639  ran crn 5642  cres 5643  cima 5644  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-2nd 7972
This theorem is referenced by:  brrange  35929
  Copyright terms: Public domain W3C validator