Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrn5 Structured version   Visualization version   GIF version

Theorem dfrn5 34734
Description: Definition of range in terms of 2nd and image. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
dfrn5 ran 𝐴 = ((2nd ↾ (V × V)) “ 𝐴)

Proof of Theorem dfrn5
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 excom 2163 . . . 4 (∃𝑦𝑝𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)) ↔ ∃𝑝𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)))
2 opex 5464 . . . . . . . 8 𝑦, 𝑧⟩ ∈ V
3 breq1 5151 . . . . . . . . . 10 (𝑝 = ⟨𝑦, 𝑧⟩ → (𝑝2nd 𝑥 ↔ ⟨𝑦, 𝑧⟩2nd 𝑥))
4 eleq1 2822 . . . . . . . . . 10 (𝑝 = ⟨𝑦, 𝑧⟩ → (𝑝𝐴 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴))
53, 4anbi12d 632 . . . . . . . . 9 (𝑝 = ⟨𝑦, 𝑧⟩ → ((𝑝2nd 𝑥𝑝𝐴) ↔ (⟨𝑦, 𝑧⟩2nd 𝑥 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐴)))
6 vex 3479 . . . . . . . . . . . 12 𝑦 ∈ V
7 vex 3479 . . . . . . . . . . . 12 𝑧 ∈ V
86, 7br2ndeq 34732 . . . . . . . . . . 11 (⟨𝑦, 𝑧⟩2nd 𝑥𝑥 = 𝑧)
9 equcom 2022 . . . . . . . . . . 11 (𝑥 = 𝑧𝑧 = 𝑥)
108, 9bitri 275 . . . . . . . . . 10 (⟨𝑦, 𝑧⟩2nd 𝑥𝑧 = 𝑥)
1110anbi1i 625 . . . . . . . . 9 ((⟨𝑦, 𝑧⟩2nd 𝑥 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐴) ↔ (𝑧 = 𝑥 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐴))
125, 11bitrdi 287 . . . . . . . 8 (𝑝 = ⟨𝑦, 𝑧⟩ → ((𝑝2nd 𝑥𝑝𝐴) ↔ (𝑧 = 𝑥 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐴)))
132, 12ceqsexv 3526 . . . . . . 7 (∃𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)) ↔ (𝑧 = 𝑥 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐴))
1413exbii 1851 . . . . . 6 (∃𝑧𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)) ↔ ∃𝑧(𝑧 = 𝑥 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐴))
15 excom 2163 . . . . . 6 (∃𝑧𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)) ↔ ∃𝑝𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)))
16 vex 3479 . . . . . . 7 𝑥 ∈ V
17 opeq2 4874 . . . . . . . 8 (𝑧 = 𝑥 → ⟨𝑦, 𝑧⟩ = ⟨𝑦, 𝑥⟩)
1817eleq1d 2819 . . . . . . 7 (𝑧 = 𝑥 → (⟨𝑦, 𝑧⟩ ∈ 𝐴 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴))
1916, 18ceqsexv 3526 . . . . . 6 (∃𝑧(𝑧 = 𝑥 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴)
2014, 15, 193bitr3ri 302 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ 𝐴 ↔ ∃𝑝𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)))
2120exbii 1851 . . . 4 (∃𝑦𝑦, 𝑥⟩ ∈ 𝐴 ↔ ∃𝑦𝑝𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)))
22 ancom 462 . . . . . 6 ((𝑝𝐴𝑝(2nd ↾ (V × V))𝑥) ↔ (𝑝(2nd ↾ (V × V))𝑥𝑝𝐴))
23 anass 470 . . . . . . 7 (((∃𝑦𝑧 𝑝 = ⟨𝑦, 𝑧⟩ ∧ 𝑝2nd 𝑥) ∧ 𝑝𝐴) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)))
2416brresi 5989 . . . . . . . . 9 (𝑝(2nd ↾ (V × V))𝑥 ↔ (𝑝 ∈ (V × V) ∧ 𝑝2nd 𝑥))
25 elvv 5749 . . . . . . . . . 10 (𝑝 ∈ (V × V) ↔ ∃𝑦𝑧 𝑝 = ⟨𝑦, 𝑧⟩)
2625anbi1i 625 . . . . . . . . 9 ((𝑝 ∈ (V × V) ∧ 𝑝2nd 𝑥) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑦, 𝑧⟩ ∧ 𝑝2nd 𝑥))
2724, 26bitri 275 . . . . . . . 8 (𝑝(2nd ↾ (V × V))𝑥 ↔ (∃𝑦𝑧 𝑝 = ⟨𝑦, 𝑧⟩ ∧ 𝑝2nd 𝑥))
2827anbi1i 625 . . . . . . 7 ((𝑝(2nd ↾ (V × V))𝑥𝑝𝐴) ↔ ((∃𝑦𝑧 𝑝 = ⟨𝑦, 𝑧⟩ ∧ 𝑝2nd 𝑥) ∧ 𝑝𝐴))
29 19.41vv 1955 . . . . . . 7 (∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)))
3023, 28, 293bitr4i 303 . . . . . 6 ((𝑝(2nd ↾ (V × V))𝑥𝑝𝐴) ↔ ∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)))
3122, 30bitri 275 . . . . 5 ((𝑝𝐴𝑝(2nd ↾ (V × V))𝑥) ↔ ∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)))
3231exbii 1851 . . . 4 (∃𝑝(𝑝𝐴𝑝(2nd ↾ (V × V))𝑥) ↔ ∃𝑝𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑝2nd 𝑥𝑝𝐴)))
331, 21, 323bitr4i 303 . . 3 (∃𝑦𝑦, 𝑥⟩ ∈ 𝐴 ↔ ∃𝑝(𝑝𝐴𝑝(2nd ↾ (V × V))𝑥))
3416elrn2 5891 . . 3 (𝑥 ∈ ran 𝐴 ↔ ∃𝑦𝑦, 𝑥⟩ ∈ 𝐴)
3516elima2 6064 . . 3 (𝑥 ∈ ((2nd ↾ (V × V)) “ 𝐴) ↔ ∃𝑝(𝑝𝐴𝑝(2nd ↾ (V × V))𝑥))
3633, 34, 353bitr4i 303 . 2 (𝑥 ∈ ran 𝐴𝑥 ∈ ((2nd ↾ (V × V)) “ 𝐴))
3736eqriv 2730 1 ran 𝐴 = ((2nd ↾ (V × V)) “ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wex 1782  wcel 2107  Vcvv 3475  cop 4634   class class class wbr 5148   × cxp 5674  ran crn 5677  cres 5678  cima 5679  2nd c2nd 7971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-fo 6547  df-fv 6549  df-2nd 7973
This theorem is referenced by:  brrange  34895
  Copyright terms: Public domain W3C validator