| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brpprod3a | Structured version Visualization version GIF version | ||
| Description: Condition for parallel product when the last argument is not an ordered pair. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| brpprod3.1 | ⊢ 𝑋 ∈ V |
| brpprod3.2 | ⊢ 𝑌 ∈ V |
| brpprod3.3 | ⊢ 𝑍 ∈ V |
| Ref | Expression |
|---|---|
| brpprod3a | ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pprodss4v 35907 | . . . . . . 7 ⊢ pprod(𝑅, 𝑆) ⊆ ((V × V) × (V × V)) | |
| 2 | 1 | brel 5724 | . . . . . 6 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 → (〈𝑋, 𝑌〉 ∈ (V × V) ∧ 𝑍 ∈ (V × V))) |
| 3 | 2 | simprd 495 | . . . . 5 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 → 𝑍 ∈ (V × V)) |
| 4 | elvv 5734 | . . . . 5 ⊢ (𝑍 ∈ (V × V) ↔ ∃𝑧∃𝑤 𝑍 = 〈𝑧, 𝑤〉) | |
| 5 | 3, 4 | sylib 218 | . . . 4 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 → ∃𝑧∃𝑤 𝑍 = 〈𝑧, 𝑤〉) |
| 6 | 5 | pm4.71ri 560 | . . 3 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ (∃𝑧∃𝑤 𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍)) |
| 7 | 19.41vv 1950 | . . 3 ⊢ (∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍) ↔ (∃𝑧∃𝑤 𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍)) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍)) |
| 9 | breq2 5128 | . . . 4 ⊢ (𝑍 = 〈𝑧, 𝑤〉 → (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉)) | |
| 10 | 9 | pm5.32i 574 | . . 3 ⊢ ((𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍) ↔ (𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉)) |
| 11 | 10 | 2exbii 1849 | . 2 ⊢ (∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍) ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉)) |
| 12 | brpprod3.1 | . . . . . 6 ⊢ 𝑋 ∈ V | |
| 13 | brpprod3.2 | . . . . . 6 ⊢ 𝑌 ∈ V | |
| 14 | vex 3468 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 15 | vex 3468 | . . . . . 6 ⊢ 𝑤 ∈ V | |
| 16 | 12, 13, 14, 15 | brpprod 35908 | . . . . 5 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉 ↔ (𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
| 17 | 16 | anbi2i 623 | . . . 4 ⊢ ((𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉) ↔ (𝑍 = 〈𝑧, 𝑤〉 ∧ (𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤))) |
| 18 | 3anass 1094 | . . . 4 ⊢ ((𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤) ↔ (𝑍 = 〈𝑧, 𝑤〉 ∧ (𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤))) | |
| 19 | 17, 18 | bitr4i 278 | . . 3 ⊢ ((𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉) ↔ (𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
| 20 | 19 | 2exbii 1849 | . 2 ⊢ (∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉) ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
| 21 | 8, 11, 20 | 3bitri 297 | 1 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3464 〈cop 4612 class class class wbr 5124 × cxp 5657 pprodcpprod 35854 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-1st 7993 df-2nd 7994 df-txp 35877 df-pprod 35878 |
| This theorem is referenced by: brpprod3b 35910 brapply 35961 dfrdg4 35974 |
| Copyright terms: Public domain | W3C validator |