Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod3a Structured version   Visualization version   GIF version

Theorem brpprod3a 34115
Description: Condition for parallel product when the last argument is not an ordered pair. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brpprod3.1 𝑋 ∈ V
brpprod3.2 𝑌 ∈ V
brpprod3.3 𝑍 ∈ V
Assertion
Ref Expression
brpprod3a (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
Distinct variable groups:   𝑧,𝑤,𝑅   𝑤,𝑆,𝑧   𝑤,𝑋,𝑧   𝑤,𝑌,𝑧   𝑤,𝑍,𝑧

Proof of Theorem brpprod3a
StepHypRef Expression
1 pprodss4v 34113 . . . . . . 7 pprod(𝑅, 𝑆) ⊆ ((V × V) × (V × V))
21brel 5643 . . . . . 6 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 → (⟨𝑋, 𝑌⟩ ∈ (V × V) ∧ 𝑍 ∈ (V × V)))
32simprd 495 . . . . 5 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍𝑍 ∈ (V × V))
4 elvv 5652 . . . . 5 (𝑍 ∈ (V × V) ↔ ∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩)
53, 4sylib 217 . . . 4 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 → ∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩)
65pm4.71ri 560 . . 3 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ (∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍))
7 19.41vv 1955 . . 3 (∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍) ↔ (∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍))
86, 7bitr4i 277 . 2 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍))
9 breq2 5074 . . . 4 (𝑍 = ⟨𝑧, 𝑤⟩ → (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩))
109pm5.32i 574 . . 3 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩))
11102exbii 1852 . 2 (∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍) ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩))
12 brpprod3.1 . . . . . 6 𝑋 ∈ V
13 brpprod3.2 . . . . . 6 𝑌 ∈ V
14 vex 3426 . . . . . 6 𝑧 ∈ V
15 vex 3426 . . . . . 6 𝑤 ∈ V
1612, 13, 14, 15brpprod 34114 . . . . 5 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩ ↔ (𝑋𝑅𝑧𝑌𝑆𝑤))
1716anbi2i 622 . . . 4 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ (𝑋𝑅𝑧𝑌𝑆𝑤)))
18 3anass 1093 . . . 4 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ (𝑋𝑅𝑧𝑌𝑆𝑤)))
1917, 18bitr4i 277 . . 3 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
20192exbii 1852 . 2 (∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩) ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
218, 11, 203bitri 296 1 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  cop 4564   class class class wbr 5070   × cxp 5578  pprodcpprod 34060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-1st 7804  df-2nd 7805  df-txp 34083  df-pprod 34084
This theorem is referenced by:  brpprod3b  34116  brapply  34167  dfrdg4  34180
  Copyright terms: Public domain W3C validator