Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod3a Structured version   Visualization version   GIF version

Theorem brpprod3a 35319
Description: Condition for parallel product when the last argument is not an ordered pair. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brpprod3.1 𝑋 ∈ V
brpprod3.2 𝑌 ∈ V
brpprod3.3 𝑍 ∈ V
Assertion
Ref Expression
brpprod3a (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
Distinct variable groups:   𝑧,𝑤,𝑅   𝑤,𝑆,𝑧   𝑤,𝑋,𝑧   𝑤,𝑌,𝑧   𝑤,𝑍,𝑧

Proof of Theorem brpprod3a
StepHypRef Expression
1 pprodss4v 35317 . . . . . . 7 pprod(𝑅, 𝑆) ⊆ ((V × V) × (V × V))
21brel 5731 . . . . . 6 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 → (⟨𝑋, 𝑌⟩ ∈ (V × V) ∧ 𝑍 ∈ (V × V)))
32simprd 495 . . . . 5 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍𝑍 ∈ (V × V))
4 elvv 5740 . . . . 5 (𝑍 ∈ (V × V) ↔ ∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩)
53, 4sylib 217 . . . 4 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 → ∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩)
65pm4.71ri 560 . . 3 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ (∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍))
7 19.41vv 1946 . . 3 (∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍) ↔ (∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍))
86, 7bitr4i 278 . 2 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍))
9 breq2 5142 . . . 4 (𝑍 = ⟨𝑧, 𝑤⟩ → (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩))
109pm5.32i 574 . . 3 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩))
11102exbii 1843 . 2 (∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍) ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩))
12 brpprod3.1 . . . . . 6 𝑋 ∈ V
13 brpprod3.2 . . . . . 6 𝑌 ∈ V
14 vex 3470 . . . . . 6 𝑧 ∈ V
15 vex 3470 . . . . . 6 𝑤 ∈ V
1612, 13, 14, 15brpprod 35318 . . . . 5 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩ ↔ (𝑋𝑅𝑧𝑌𝑆𝑤))
1716anbi2i 622 . . . 4 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ (𝑋𝑅𝑧𝑌𝑆𝑤)))
18 3anass 1092 . . . 4 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ (𝑋𝑅𝑧𝑌𝑆𝑤)))
1917, 18bitr4i 278 . . 3 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
20192exbii 1843 . 2 (∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩) ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
218, 11, 203bitri 297 1 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1084   = wceq 1533  wex 1773  wcel 2098  Vcvv 3466  cop 4626   class class class wbr 5138   × cxp 5664  pprodcpprod 35264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-fo 6539  df-fv 6541  df-1st 7968  df-2nd 7969  df-txp 35287  df-pprod 35288
This theorem is referenced by:  brpprod3b  35320  brapply  35371  dfrdg4  35384
  Copyright terms: Public domain W3C validator