Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod3a Structured version   Visualization version   GIF version

Theorem brpprod3a 33460
Description: Condition for parallel product when the last argument is not an ordered pair. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brpprod3.1 𝑋 ∈ V
brpprod3.2 𝑌 ∈ V
brpprod3.3 𝑍 ∈ V
Assertion
Ref Expression
brpprod3a (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
Distinct variable groups:   𝑧,𝑤,𝑅   𝑤,𝑆,𝑧   𝑤,𝑋,𝑧   𝑤,𝑌,𝑧   𝑤,𝑍,𝑧

Proof of Theorem brpprod3a
StepHypRef Expression
1 pprodss4v 33458 . . . . . . 7 pprod(𝑅, 𝑆) ⊆ ((V × V) × (V × V))
21brel 5581 . . . . . 6 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 → (⟨𝑋, 𝑌⟩ ∈ (V × V) ∧ 𝑍 ∈ (V × V)))
32simprd 499 . . . . 5 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍𝑍 ∈ (V × V))
4 elvv 5590 . . . . 5 (𝑍 ∈ (V × V) ↔ ∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩)
53, 4sylib 221 . . . 4 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 → ∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩)
65pm4.71ri 564 . . 3 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ (∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍))
7 19.41vv 1951 . . 3 (∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍) ↔ (∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍))
86, 7bitr4i 281 . 2 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍))
9 breq2 5034 . . . 4 (𝑍 = ⟨𝑧, 𝑤⟩ → (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩))
109pm5.32i 578 . . 3 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩))
11102exbii 1850 . 2 (∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍) ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩))
12 brpprod3.1 . . . . . 6 𝑋 ∈ V
13 brpprod3.2 . . . . . 6 𝑌 ∈ V
14 vex 3444 . . . . . 6 𝑧 ∈ V
15 vex 3444 . . . . . 6 𝑤 ∈ V
1612, 13, 14, 15brpprod 33459 . . . . 5 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩ ↔ (𝑋𝑅𝑧𝑌𝑆𝑤))
1716anbi2i 625 . . . 4 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ (𝑋𝑅𝑧𝑌𝑆𝑤)))
18 3anass 1092 . . . 4 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ (𝑋𝑅𝑧𝑌𝑆𝑤)))
1917, 18bitr4i 281 . . 3 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
20192exbii 1850 . 2 (∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩) ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
218, 11, 203bitri 300 1 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  Vcvv 3441  cop 4531   class class class wbr 5030   × cxp 5517  pprodcpprod 33405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fo 6330  df-fv 6332  df-1st 7671  df-2nd 7672  df-txp 33428  df-pprod 33429
This theorem is referenced by:  brpprod3b  33461  brapply  33512  dfrdg4  33525
  Copyright terms: Public domain W3C validator