Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod3a Structured version   Visualization version   GIF version

Theorem brpprod3a 35928
Description: Condition for parallel product when the last argument is not an ordered pair. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brpprod3.1 𝑋 ∈ V
brpprod3.2 𝑌 ∈ V
brpprod3.3 𝑍 ∈ V
Assertion
Ref Expression
brpprod3a (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
Distinct variable groups:   𝑧,𝑤,𝑅   𝑤,𝑆,𝑧   𝑤,𝑋,𝑧   𝑤,𝑌,𝑧   𝑤,𝑍,𝑧

Proof of Theorem brpprod3a
StepHypRef Expression
1 pprodss4v 35926 . . . . . . 7 pprod(𝑅, 𝑆) ⊆ ((V × V) × (V × V))
21brel 5679 . . . . . 6 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 → (⟨𝑋, 𝑌⟩ ∈ (V × V) ∧ 𝑍 ∈ (V × V)))
32simprd 495 . . . . 5 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍𝑍 ∈ (V × V))
4 elvv 5689 . . . . 5 (𝑍 ∈ (V × V) ↔ ∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩)
53, 4sylib 218 . . . 4 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 → ∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩)
65pm4.71ri 560 . . 3 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ (∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍))
7 19.41vv 1951 . . 3 (∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍) ↔ (∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍))
86, 7bitr4i 278 . 2 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍))
9 breq2 5093 . . . 4 (𝑍 = ⟨𝑧, 𝑤⟩ → (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩))
109pm5.32i 574 . . 3 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩))
11102exbii 1850 . 2 (∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍) ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩))
12 brpprod3.1 . . . . . 6 𝑋 ∈ V
13 brpprod3.2 . . . . . 6 𝑌 ∈ V
14 vex 3440 . . . . . 6 𝑧 ∈ V
15 vex 3440 . . . . . 6 𝑤 ∈ V
1612, 13, 14, 15brpprod 35927 . . . . 5 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩ ↔ (𝑋𝑅𝑧𝑌𝑆𝑤))
1716anbi2i 623 . . . 4 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ (𝑋𝑅𝑧𝑌𝑆𝑤)))
18 3anass 1094 . . . 4 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ (𝑋𝑅𝑧𝑌𝑆𝑤)))
1917, 18bitr4i 278 . . 3 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
20192exbii 1850 . 2 (∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩) ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
218, 11, 203bitri 297 1 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  cop 4579   class class class wbr 5089   × cxp 5612  pprodcpprod 35873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1st 7921  df-2nd 7922  df-txp 35896  df-pprod 35897
This theorem is referenced by:  brpprod3b  35929  brapply  35980  dfrdg4  35995
  Copyright terms: Public domain W3C validator