Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brpprod3a | Structured version Visualization version GIF version |
Description: Condition for parallel product when the last argument is not an ordered pair. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brpprod3.1 | ⊢ 𝑋 ∈ V |
brpprod3.2 | ⊢ 𝑌 ∈ V |
brpprod3.3 | ⊢ 𝑍 ∈ V |
Ref | Expression |
---|---|
brpprod3a | ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pprodss4v 33735 | . . . . . . 7 ⊢ pprod(𝑅, 𝑆) ⊆ ((V × V) × (V × V)) | |
2 | 1 | brel 5586 | . . . . . 6 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 → (〈𝑋, 𝑌〉 ∈ (V × V) ∧ 𝑍 ∈ (V × V))) |
3 | 2 | simprd 499 | . . . . 5 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 → 𝑍 ∈ (V × V)) |
4 | elvv 5595 | . . . . 5 ⊢ (𝑍 ∈ (V × V) ↔ ∃𝑧∃𝑤 𝑍 = 〈𝑧, 𝑤〉) | |
5 | 3, 4 | sylib 221 | . . . 4 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 → ∃𝑧∃𝑤 𝑍 = 〈𝑧, 𝑤〉) |
6 | 5 | pm4.71ri 564 | . . 3 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ (∃𝑧∃𝑤 𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍)) |
7 | 19.41vv 1951 | . . 3 ⊢ (∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍) ↔ (∃𝑧∃𝑤 𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍)) | |
8 | 6, 7 | bitr4i 281 | . 2 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍)) |
9 | breq2 5036 | . . . 4 ⊢ (𝑍 = 〈𝑧, 𝑤〉 → (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉)) | |
10 | 9 | pm5.32i 578 | . . 3 ⊢ ((𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍) ↔ (𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉)) |
11 | 10 | 2exbii 1850 | . 2 ⊢ (∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍) ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉)) |
12 | brpprod3.1 | . . . . . 6 ⊢ 𝑋 ∈ V | |
13 | brpprod3.2 | . . . . . 6 ⊢ 𝑌 ∈ V | |
14 | vex 3413 | . . . . . 6 ⊢ 𝑧 ∈ V | |
15 | vex 3413 | . . . . . 6 ⊢ 𝑤 ∈ V | |
16 | 12, 13, 14, 15 | brpprod 33736 | . . . . 5 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉 ↔ (𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
17 | 16 | anbi2i 625 | . . . 4 ⊢ ((𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉) ↔ (𝑍 = 〈𝑧, 𝑤〉 ∧ (𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤))) |
18 | 3anass 1092 | . . . 4 ⊢ ((𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤) ↔ (𝑍 = 〈𝑧, 𝑤〉 ∧ (𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤))) | |
19 | 17, 18 | bitr4i 281 | . . 3 ⊢ ((𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉) ↔ (𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
20 | 19 | 2exbii 1850 | . 2 ⊢ (∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉) ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
21 | 8, 11, 20 | 3bitri 300 | 1 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∃wex 1781 ∈ wcel 2111 Vcvv 3409 〈cop 4528 class class class wbr 5032 × cxp 5522 pprodcpprod 33682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-fo 6341 df-fv 6343 df-1st 7693 df-2nd 7694 df-txp 33705 df-pprod 33706 |
This theorem is referenced by: brpprod3b 33738 brapply 33789 dfrdg4 33802 |
Copyright terms: Public domain | W3C validator |