| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brpprod3a | Structured version Visualization version GIF version | ||
| Description: Condition for parallel product when the last argument is not an ordered pair. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| brpprod3.1 | ⊢ 𝑋 ∈ V |
| brpprod3.2 | ⊢ 𝑌 ∈ V |
| brpprod3.3 | ⊢ 𝑍 ∈ V |
| Ref | Expression |
|---|---|
| brpprod3a | ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pprodss4v 35872 | . . . . . . 7 ⊢ pprod(𝑅, 𝑆) ⊆ ((V × V) × (V × V)) | |
| 2 | 1 | brel 5703 | . . . . . 6 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 → (〈𝑋, 𝑌〉 ∈ (V × V) ∧ 𝑍 ∈ (V × V))) |
| 3 | 2 | simprd 495 | . . . . 5 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 → 𝑍 ∈ (V × V)) |
| 4 | elvv 5713 | . . . . 5 ⊢ (𝑍 ∈ (V × V) ↔ ∃𝑧∃𝑤 𝑍 = 〈𝑧, 𝑤〉) | |
| 5 | 3, 4 | sylib 218 | . . . 4 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 → ∃𝑧∃𝑤 𝑍 = 〈𝑧, 𝑤〉) |
| 6 | 5 | pm4.71ri 560 | . . 3 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ (∃𝑧∃𝑤 𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍)) |
| 7 | 19.41vv 1950 | . . 3 ⊢ (∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍) ↔ (∃𝑧∃𝑤 𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍)) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍)) |
| 9 | breq2 5111 | . . . 4 ⊢ (𝑍 = 〈𝑧, 𝑤〉 → (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉)) | |
| 10 | 9 | pm5.32i 574 | . . 3 ⊢ ((𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍) ↔ (𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉)) |
| 11 | 10 | 2exbii 1849 | . 2 ⊢ (∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍) ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉)) |
| 12 | brpprod3.1 | . . . . . 6 ⊢ 𝑋 ∈ V | |
| 13 | brpprod3.2 | . . . . . 6 ⊢ 𝑌 ∈ V | |
| 14 | vex 3451 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 15 | vex 3451 | . . . . . 6 ⊢ 𝑤 ∈ V | |
| 16 | 12, 13, 14, 15 | brpprod 35873 | . . . . 5 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉 ↔ (𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
| 17 | 16 | anbi2i 623 | . . . 4 ⊢ ((𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉) ↔ (𝑍 = 〈𝑧, 𝑤〉 ∧ (𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤))) |
| 18 | 3anass 1094 | . . . 4 ⊢ ((𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤) ↔ (𝑍 = 〈𝑧, 𝑤〉 ∧ (𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤))) | |
| 19 | 17, 18 | bitr4i 278 | . . 3 ⊢ ((𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉) ↔ (𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
| 20 | 19 | 2exbii 1849 | . 2 ⊢ (∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 〈𝑋, 𝑌〉pprod(𝑅, 𝑆)〈𝑧, 𝑤〉) ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
| 21 | 8, 11, 20 | 3bitri 297 | 1 ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 〈cop 4595 class class class wbr 5107 × cxp 5636 pprodcpprod 35819 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-1st 7968 df-2nd 7969 df-txp 35842 df-pprod 35843 |
| This theorem is referenced by: brpprod3b 35875 brapply 35926 dfrdg4 35939 |
| Copyright terms: Public domain | W3C validator |