Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod3a Structured version   Visualization version   GIF version

Theorem brpprod3a 32369
Description: Condition for parallel product when the last argument is not an ordered pair. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brpprod3.1 𝑋 ∈ V
brpprod3.2 𝑌 ∈ V
brpprod3.3 𝑍 ∈ V
Assertion
Ref Expression
brpprod3a (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
Distinct variable groups:   𝑧,𝑤,𝑅   𝑤,𝑆,𝑧   𝑤,𝑋,𝑧   𝑤,𝑌,𝑧   𝑤,𝑍,𝑧

Proof of Theorem brpprod3a
StepHypRef Expression
1 pprodss4v 32367 . . . . . . 7 pprod(𝑅, 𝑆) ⊆ ((V × V) × (V × V))
21brel 5336 . . . . . 6 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 → (⟨𝑋, 𝑌⟩ ∈ (V × V) ∧ 𝑍 ∈ (V × V)))
32simprd 489 . . . . 5 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍𝑍 ∈ (V × V))
4 elvv 5345 . . . . 5 (𝑍 ∈ (V × V) ↔ ∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩)
53, 4sylib 209 . . . 4 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 → ∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩)
65pm4.71ri 556 . . 3 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ (∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍))
7 19.41vv 2045 . . 3 (∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍) ↔ (∃𝑧𝑤 𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍))
86, 7bitr4i 269 . 2 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍))
9 breq2 4813 . . . 4 (𝑍 = ⟨𝑧, 𝑤⟩ → (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩))
109pm5.32i 570 . . 3 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩))
11102exbii 1944 . 2 (∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍) ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩))
12 brpprod3.1 . . . . . 6 𝑋 ∈ V
13 brpprod3.2 . . . . . 6 𝑌 ∈ V
14 vex 3353 . . . . . 6 𝑧 ∈ V
15 vex 3353 . . . . . 6 𝑤 ∈ V
1612, 13, 14, 15brpprod 32368 . . . . 5 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩ ↔ (𝑋𝑅𝑧𝑌𝑆𝑤))
1716anbi2i 616 . . . 4 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ (𝑋𝑅𝑧𝑌𝑆𝑤)))
18 3anass 1116 . . . 4 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ (𝑋𝑅𝑧𝑌𝑆𝑤)))
1917, 18bitr4i 269 . . 3 ((𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩) ↔ (𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
20192exbii 1944 . 2 (∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)⟨𝑧, 𝑤⟩) ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
218, 11, 203bitri 288 1 (⟨𝑋, 𝑌⟩pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧𝑤(𝑍 = ⟨𝑧, 𝑤⟩ ∧ 𝑋𝑅𝑧𝑌𝑆𝑤))
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384  w3a 1107   = wceq 1652  wex 1874  wcel 2155  Vcvv 3350  cop 4340   class class class wbr 4809   × cxp 5275  pprodcpprod 32314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-fo 6074  df-fv 6076  df-1st 7366  df-2nd 7367  df-txp 32337  df-pprod 32338
This theorem is referenced by:  brpprod3b  32370  brapply  32421  dfrdg4  32434
  Copyright terms: Public domain W3C validator