Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod3a Structured version   Visualization version   GIF version

Theorem brpprod3a 35163
Description: Condition for parallel product when the last argument is not an ordered pair. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brpprod3.1 𝑋 ∈ V
brpprod3.2 π‘Œ ∈ V
brpprod3.3 𝑍 ∈ V
Assertion
Ref Expression
brpprod3a (βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)𝑍 ↔ βˆƒπ‘§βˆƒπ‘€(𝑍 = βŸ¨π‘§, π‘€βŸ© ∧ 𝑋𝑅𝑧 ∧ π‘Œπ‘†π‘€))
Distinct variable groups:   𝑧,𝑀,𝑅   𝑀,𝑆,𝑧   𝑀,𝑋,𝑧   𝑀,π‘Œ,𝑧   𝑀,𝑍,𝑧

Proof of Theorem brpprod3a
StepHypRef Expression
1 pprodss4v 35161 . . . . . . 7 pprod(𝑅, 𝑆) βŠ† ((V Γ— V) Γ— (V Γ— V))
21brel 5741 . . . . . 6 (βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)𝑍 β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ (V Γ— V) ∧ 𝑍 ∈ (V Γ— V)))
32simprd 495 . . . . 5 (βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)𝑍 β†’ 𝑍 ∈ (V Γ— V))
4 elvv 5750 . . . . 5 (𝑍 ∈ (V Γ— V) ↔ βˆƒπ‘§βˆƒπ‘€ 𝑍 = βŸ¨π‘§, π‘€βŸ©)
53, 4sylib 217 . . . 4 (βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)𝑍 β†’ βˆƒπ‘§βˆƒπ‘€ 𝑍 = βŸ¨π‘§, π‘€βŸ©)
65pm4.71ri 560 . . 3 (βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)𝑍 ↔ (βˆƒπ‘§βˆƒπ‘€ 𝑍 = βŸ¨π‘§, π‘€βŸ© ∧ βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)𝑍))
7 19.41vv 1953 . . 3 (βˆƒπ‘§βˆƒπ‘€(𝑍 = βŸ¨π‘§, π‘€βŸ© ∧ βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)𝑍) ↔ (βˆƒπ‘§βˆƒπ‘€ 𝑍 = βŸ¨π‘§, π‘€βŸ© ∧ βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)𝑍))
86, 7bitr4i 278 . 2 (βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)𝑍 ↔ βˆƒπ‘§βˆƒπ‘€(𝑍 = βŸ¨π‘§, π‘€βŸ© ∧ βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)𝑍))
9 breq2 5152 . . . 4 (𝑍 = βŸ¨π‘§, π‘€βŸ© β†’ (βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)𝑍 ↔ βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)βŸ¨π‘§, π‘€βŸ©))
109pm5.32i 574 . . 3 ((𝑍 = βŸ¨π‘§, π‘€βŸ© ∧ βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)𝑍) ↔ (𝑍 = βŸ¨π‘§, π‘€βŸ© ∧ βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)βŸ¨π‘§, π‘€βŸ©))
11102exbii 1850 . 2 (βˆƒπ‘§βˆƒπ‘€(𝑍 = βŸ¨π‘§, π‘€βŸ© ∧ βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)𝑍) ↔ βˆƒπ‘§βˆƒπ‘€(𝑍 = βŸ¨π‘§, π‘€βŸ© ∧ βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)βŸ¨π‘§, π‘€βŸ©))
12 brpprod3.1 . . . . . 6 𝑋 ∈ V
13 brpprod3.2 . . . . . 6 π‘Œ ∈ V
14 vex 3477 . . . . . 6 𝑧 ∈ V
15 vex 3477 . . . . . 6 𝑀 ∈ V
1612, 13, 14, 15brpprod 35162 . . . . 5 (βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)βŸ¨π‘§, π‘€βŸ© ↔ (𝑋𝑅𝑧 ∧ π‘Œπ‘†π‘€))
1716anbi2i 622 . . . 4 ((𝑍 = βŸ¨π‘§, π‘€βŸ© ∧ βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)βŸ¨π‘§, π‘€βŸ©) ↔ (𝑍 = βŸ¨π‘§, π‘€βŸ© ∧ (𝑋𝑅𝑧 ∧ π‘Œπ‘†π‘€)))
18 3anass 1094 . . . 4 ((𝑍 = βŸ¨π‘§, π‘€βŸ© ∧ 𝑋𝑅𝑧 ∧ π‘Œπ‘†π‘€) ↔ (𝑍 = βŸ¨π‘§, π‘€βŸ© ∧ (𝑋𝑅𝑧 ∧ π‘Œπ‘†π‘€)))
1917, 18bitr4i 278 . . 3 ((𝑍 = βŸ¨π‘§, π‘€βŸ© ∧ βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)βŸ¨π‘§, π‘€βŸ©) ↔ (𝑍 = βŸ¨π‘§, π‘€βŸ© ∧ 𝑋𝑅𝑧 ∧ π‘Œπ‘†π‘€))
20192exbii 1850 . 2 (βˆƒπ‘§βˆƒπ‘€(𝑍 = βŸ¨π‘§, π‘€βŸ© ∧ βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)βŸ¨π‘§, π‘€βŸ©) ↔ βˆƒπ‘§βˆƒπ‘€(𝑍 = βŸ¨π‘§, π‘€βŸ© ∧ 𝑋𝑅𝑧 ∧ π‘Œπ‘†π‘€))
218, 11, 203bitri 297 1 (βŸ¨π‘‹, π‘ŒβŸ©pprod(𝑅, 𝑆)𝑍 ↔ βˆƒπ‘§βˆƒπ‘€(𝑍 = βŸ¨π‘§, π‘€βŸ© ∧ 𝑋𝑅𝑧 ∧ π‘Œπ‘†π‘€))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540  βˆƒwex 1780   ∈ wcel 2105  Vcvv 3473  βŸ¨cop 4634   class class class wbr 5148   Γ— cxp 5674  pprodcpprod 35108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-1st 7979  df-2nd 7980  df-txp 35131  df-pprod 35132
This theorem is referenced by:  brpprod3b  35164  brapply  35215  dfrdg4  35228
  Copyright terms: Public domain W3C validator