Step | Hyp | Ref
| Expression |
1 | | pprodss4v 35161 |
. . . . . . 7
β’
pprod(π
, π) β ((V Γ V) Γ
(V Γ V)) |
2 | 1 | brel 5741 |
. . . . . 6
β’
(β¨π, πβ©pprod(π
, π)π β (β¨π, πβ© β (V Γ V) β§ π β (V Γ
V))) |
3 | 2 | simprd 495 |
. . . . 5
β’
(β¨π, πβ©pprod(π
, π)π β π β (V Γ V)) |
4 | | elvv 5750 |
. . . . 5
β’ (π β (V Γ V) β
βπ§βπ€ π = β¨π§, π€β©) |
5 | 3, 4 | sylib 217 |
. . . 4
β’
(β¨π, πβ©pprod(π
, π)π β βπ§βπ€ π = β¨π§, π€β©) |
6 | 5 | pm4.71ri 560 |
. . 3
β’
(β¨π, πβ©pprod(π
, π)π β (βπ§βπ€ π = β¨π§, π€β© β§ β¨π, πβ©pprod(π
, π)π)) |
7 | | 19.41vv 1953 |
. . 3
β’
(βπ§βπ€(π = β¨π§, π€β© β§ β¨π, πβ©pprod(π
, π)π) β (βπ§βπ€ π = β¨π§, π€β© β§ β¨π, πβ©pprod(π
, π)π)) |
8 | 6, 7 | bitr4i 278 |
. 2
β’
(β¨π, πβ©pprod(π
, π)π β βπ§βπ€(π = β¨π§, π€β© β§ β¨π, πβ©pprod(π
, π)π)) |
9 | | breq2 5152 |
. . . 4
β’ (π = β¨π§, π€β© β (β¨π, πβ©pprod(π
, π)π β β¨π, πβ©pprod(π
, π)β¨π§, π€β©)) |
10 | 9 | pm5.32i 574 |
. . 3
β’ ((π = β¨π§, π€β© β§ β¨π, πβ©pprod(π
, π)π) β (π = β¨π§, π€β© β§ β¨π, πβ©pprod(π
, π)β¨π§, π€β©)) |
11 | 10 | 2exbii 1850 |
. 2
β’
(βπ§βπ€(π = β¨π§, π€β© β§ β¨π, πβ©pprod(π
, π)π) β βπ§βπ€(π = β¨π§, π€β© β§ β¨π, πβ©pprod(π
, π)β¨π§, π€β©)) |
12 | | brpprod3.1 |
. . . . . 6
β’ π β V |
13 | | brpprod3.2 |
. . . . . 6
β’ π β V |
14 | | vex 3477 |
. . . . . 6
β’ π§ β V |
15 | | vex 3477 |
. . . . . 6
β’ π€ β V |
16 | 12, 13, 14, 15 | brpprod 35162 |
. . . . 5
β’
(β¨π, πβ©pprod(π
, π)β¨π§, π€β© β (ππ
π§ β§ πππ€)) |
17 | 16 | anbi2i 622 |
. . . 4
β’ ((π = β¨π§, π€β© β§ β¨π, πβ©pprod(π
, π)β¨π§, π€β©) β (π = β¨π§, π€β© β§ (ππ
π§ β§ πππ€))) |
18 | | 3anass 1094 |
. . . 4
β’ ((π = β¨π§, π€β© β§ ππ
π§ β§ πππ€) β (π = β¨π§, π€β© β§ (ππ
π§ β§ πππ€))) |
19 | 17, 18 | bitr4i 278 |
. . 3
β’ ((π = β¨π§, π€β© β§ β¨π, πβ©pprod(π
, π)β¨π§, π€β©) β (π = β¨π§, π€β© β§ ππ
π§ β§ πππ€)) |
20 | 19 | 2exbii 1850 |
. 2
β’
(βπ§βπ€(π = β¨π§, π€β© β§ β¨π, πβ©pprod(π
, π)β¨π§, π€β©) β βπ§βπ€(π = β¨π§, π€β© β§ ππ
π§ β§ πππ€)) |
21 | 8, 11, 20 | 3bitri 297 |
1
β’
(β¨π, πβ©pprod(π
, π)π β βπ§βπ€(π = β¨π§, π€β© β§ ππ
π§ β§ πππ€)) |