Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdm5 Structured version   Visualization version   GIF version

Theorem dfdm5 35790
Description: Definition of domain in terms of 1st and image. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
dfdm5 dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴)

Proof of Theorem dfdm5
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 excom 2162 . . . 4 (∃𝑦𝑝𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ ∃𝑝𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
2 opex 5439 . . . . . . . 8 𝑧, 𝑦⟩ ∈ V
3 breq1 5122 . . . . . . . . . 10 (𝑝 = ⟨𝑧, 𝑦⟩ → (𝑝1st 𝑥 ↔ ⟨𝑧, 𝑦⟩1st 𝑥))
4 eleq1 2822 . . . . . . . . . 10 (𝑝 = ⟨𝑧, 𝑦⟩ → (𝑝𝐴 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
53, 4anbi12d 632 . . . . . . . . 9 (𝑝 = ⟨𝑧, 𝑦⟩ → ((𝑝1st 𝑥𝑝𝐴) ↔ (⟨𝑧, 𝑦⟩1st 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴)))
6 vex 3463 . . . . . . . . . . . 12 𝑧 ∈ V
7 vex 3463 . . . . . . . . . . . 12 𝑦 ∈ V
86, 7br1steq 35788 . . . . . . . . . . 11 (⟨𝑧, 𝑦⟩1st 𝑥𝑥 = 𝑧)
9 equcom 2017 . . . . . . . . . . 11 (𝑥 = 𝑧𝑧 = 𝑥)
108, 9bitri 275 . . . . . . . . . 10 (⟨𝑧, 𝑦⟩1st 𝑥𝑧 = 𝑥)
1110anbi1i 624 . . . . . . . . 9 ((⟨𝑧, 𝑦⟩1st 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ (𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
125, 11bitrdi 287 . . . . . . . 8 (𝑝 = ⟨𝑧, 𝑦⟩ → ((𝑝1st 𝑥𝑝𝐴) ↔ (𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴)))
132, 12ceqsexv 3511 . . . . . . 7 (∃𝑝(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ (𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
1413exbii 1848 . . . . . 6 (∃𝑧𝑝(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ ∃𝑧(𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
15 excom 2162 . . . . . 6 (∃𝑧𝑝(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ ∃𝑝𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
16 vex 3463 . . . . . . 7 𝑥 ∈ V
17 opeq1 4849 . . . . . . . 8 (𝑧 = 𝑥 → ⟨𝑧, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
1817eleq1d 2819 . . . . . . 7 (𝑧 = 𝑥 → (⟨𝑧, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
1916, 18ceqsexv 3511 . . . . . 6 (∃𝑧(𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
2014, 15, 193bitr3ri 302 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑝𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
2120exbii 1848 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑦𝑝𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
22 ancom 460 . . . . . 6 ((𝑝𝐴𝑝(1st ↾ (V × V))𝑥) ↔ (𝑝(1st ↾ (V × V))𝑥𝑝𝐴))
23 anass 468 . . . . . . 7 (((∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝1st 𝑥) ∧ 𝑝𝐴) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
2416brresi 5975 . . . . . . . . 9 (𝑝(1st ↾ (V × V))𝑥 ↔ (𝑝 ∈ (V × V) ∧ 𝑝1st 𝑥))
25 elvv 5729 . . . . . . . . . . 11 (𝑝 ∈ (V × V) ↔ ∃𝑧𝑦 𝑝 = ⟨𝑧, 𝑦⟩)
26 excom 2162 . . . . . . . . . . 11 (∃𝑧𝑦 𝑝 = ⟨𝑧, 𝑦⟩ ↔ ∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩)
2725, 26bitri 275 . . . . . . . . . 10 (𝑝 ∈ (V × V) ↔ ∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩)
2827anbi1i 624 . . . . . . . . 9 ((𝑝 ∈ (V × V) ∧ 𝑝1st 𝑥) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝1st 𝑥))
2924, 28bitri 275 . . . . . . . 8 (𝑝(1st ↾ (V × V))𝑥 ↔ (∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝1st 𝑥))
3029anbi1i 624 . . . . . . 7 ((𝑝(1st ↾ (V × V))𝑥𝑝𝐴) ↔ ((∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝1st 𝑥) ∧ 𝑝𝐴))
31 19.41vv 1950 . . . . . . 7 (∃𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
3223, 30, 313bitr4i 303 . . . . . 6 ((𝑝(1st ↾ (V × V))𝑥𝑝𝐴) ↔ ∃𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
3322, 32bitri 275 . . . . 5 ((𝑝𝐴𝑝(1st ↾ (V × V))𝑥) ↔ ∃𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
3433exbii 1848 . . . 4 (∃𝑝(𝑝𝐴𝑝(1st ↾ (V × V))𝑥) ↔ ∃𝑝𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
351, 21, 343bitr4i 303 . . 3 (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑝(𝑝𝐴𝑝(1st ↾ (V × V))𝑥))
3616eldm2 5881 . . 3 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
3716elima2 6053 . . 3 (𝑥 ∈ ((1st ↾ (V × V)) “ 𝐴) ↔ ∃𝑝(𝑝𝐴𝑝(1st ↾ (V × V))𝑥))
3835, 36, 373bitr4i 303 . 2 (𝑥 ∈ dom 𝐴𝑥 ∈ ((1st ↾ (V × V)) “ 𝐴))
3938eqriv 2732 1 dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2108  Vcvv 3459  cop 4607   class class class wbr 5119   × cxp 5652  dom cdm 5654  cres 5656  cima 5657  1st c1st 7986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fo 6537  df-fv 6539  df-1st 7988
This theorem is referenced by:  brdomain  35951
  Copyright terms: Public domain W3C validator