| Step | Hyp | Ref
| Expression |
| 1 | | excom 2162 |
. . . 4
⊢
(∃𝑦∃𝑝∃𝑧(𝑝 = 〈𝑧, 𝑦〉 ∧ (𝑝1st 𝑥 ∧ 𝑝 ∈ 𝐴)) ↔ ∃𝑝∃𝑦∃𝑧(𝑝 = 〈𝑧, 𝑦〉 ∧ (𝑝1st 𝑥 ∧ 𝑝 ∈ 𝐴))) |
| 2 | | opex 5439 |
. . . . . . . 8
⊢
〈𝑧, 𝑦〉 ∈ V |
| 3 | | breq1 5122 |
. . . . . . . . . 10
⊢ (𝑝 = 〈𝑧, 𝑦〉 → (𝑝1st 𝑥 ↔ 〈𝑧, 𝑦〉1st 𝑥)) |
| 4 | | eleq1 2822 |
. . . . . . . . . 10
⊢ (𝑝 = 〈𝑧, 𝑦〉 → (𝑝 ∈ 𝐴 ↔ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
| 5 | 3, 4 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑧, 𝑦〉 → ((𝑝1st 𝑥 ∧ 𝑝 ∈ 𝐴) ↔ (〈𝑧, 𝑦〉1st 𝑥 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴))) |
| 6 | | vex 3463 |
. . . . . . . . . . . 12
⊢ 𝑧 ∈ V |
| 7 | | vex 3463 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
| 8 | 6, 7 | br1steq 35788 |
. . . . . . . . . . 11
⊢
(〈𝑧, 𝑦〉1st 𝑥 ↔ 𝑥 = 𝑧) |
| 9 | | equcom 2017 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 ↔ 𝑧 = 𝑥) |
| 10 | 8, 9 | bitri 275 |
. . . . . . . . . 10
⊢
(〈𝑧, 𝑦〉1st 𝑥 ↔ 𝑧 = 𝑥) |
| 11 | 10 | anbi1i 624 |
. . . . . . . . 9
⊢
((〈𝑧, 𝑦〉1st 𝑥 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ (𝑧 = 𝑥 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
| 12 | 5, 11 | bitrdi 287 |
. . . . . . . 8
⊢ (𝑝 = 〈𝑧, 𝑦〉 → ((𝑝1st 𝑥 ∧ 𝑝 ∈ 𝐴) ↔ (𝑧 = 𝑥 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴))) |
| 13 | 2, 12 | ceqsexv 3511 |
. . . . . . 7
⊢
(∃𝑝(𝑝 = 〈𝑧, 𝑦〉 ∧ (𝑝1st 𝑥 ∧ 𝑝 ∈ 𝐴)) ↔ (𝑧 = 𝑥 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
| 14 | 13 | exbii 1848 |
. . . . . 6
⊢
(∃𝑧∃𝑝(𝑝 = 〈𝑧, 𝑦〉 ∧ (𝑝1st 𝑥 ∧ 𝑝 ∈ 𝐴)) ↔ ∃𝑧(𝑧 = 𝑥 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴)) |
| 15 | | excom 2162 |
. . . . . 6
⊢
(∃𝑧∃𝑝(𝑝 = 〈𝑧, 𝑦〉 ∧ (𝑝1st 𝑥 ∧ 𝑝 ∈ 𝐴)) ↔ ∃𝑝∃𝑧(𝑝 = 〈𝑧, 𝑦〉 ∧ (𝑝1st 𝑥 ∧ 𝑝 ∈ 𝐴))) |
| 16 | | vex 3463 |
. . . . . . 7
⊢ 𝑥 ∈ V |
| 17 | | opeq1 4849 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → 〈𝑧, 𝑦〉 = 〈𝑥, 𝑦〉) |
| 18 | 17 | eleq1d 2819 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (〈𝑧, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
| 19 | 16, 18 | ceqsexv 3511 |
. . . . . 6
⊢
(∃𝑧(𝑧 = 𝑥 ∧ 〈𝑧, 𝑦〉 ∈ 𝐴) ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) |
| 20 | 14, 15, 19 | 3bitr3ri 302 |
. . . . 5
⊢
(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ∃𝑝∃𝑧(𝑝 = 〈𝑧, 𝑦〉 ∧ (𝑝1st 𝑥 ∧ 𝑝 ∈ 𝐴))) |
| 21 | 20 | exbii 1848 |
. . . 4
⊢
(∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ∃𝑦∃𝑝∃𝑧(𝑝 = 〈𝑧, 𝑦〉 ∧ (𝑝1st 𝑥 ∧ 𝑝 ∈ 𝐴))) |
| 22 | | ancom 460 |
. . . . . 6
⊢ ((𝑝 ∈ 𝐴 ∧ 𝑝(1st ↾ (V × V))𝑥) ↔ (𝑝(1st ↾ (V × V))𝑥 ∧ 𝑝 ∈ 𝐴)) |
| 23 | | anass 468 |
. . . . . . 7
⊢
(((∃𝑦∃𝑧 𝑝 = 〈𝑧, 𝑦〉 ∧ 𝑝1st 𝑥) ∧ 𝑝 ∈ 𝐴) ↔ (∃𝑦∃𝑧 𝑝 = 〈𝑧, 𝑦〉 ∧ (𝑝1st 𝑥 ∧ 𝑝 ∈ 𝐴))) |
| 24 | 16 | brresi 5975 |
. . . . . . . . 9
⊢ (𝑝(1st ↾ (V
× V))𝑥 ↔ (𝑝 ∈ (V × V) ∧
𝑝1st 𝑥)) |
| 25 | | elvv 5729 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ (V × V) ↔
∃𝑧∃𝑦 𝑝 = 〈𝑧, 𝑦〉) |
| 26 | | excom 2162 |
. . . . . . . . . . 11
⊢
(∃𝑧∃𝑦 𝑝 = 〈𝑧, 𝑦〉 ↔ ∃𝑦∃𝑧 𝑝 = 〈𝑧, 𝑦〉) |
| 27 | 25, 26 | bitri 275 |
. . . . . . . . . 10
⊢ (𝑝 ∈ (V × V) ↔
∃𝑦∃𝑧 𝑝 = 〈𝑧, 𝑦〉) |
| 28 | 27 | anbi1i 624 |
. . . . . . . . 9
⊢ ((𝑝 ∈ (V × V) ∧
𝑝1st 𝑥) ↔ (∃𝑦∃𝑧 𝑝 = 〈𝑧, 𝑦〉 ∧ 𝑝1st 𝑥)) |
| 29 | 24, 28 | bitri 275 |
. . . . . . . 8
⊢ (𝑝(1st ↾ (V
× V))𝑥 ↔
(∃𝑦∃𝑧 𝑝 = 〈𝑧, 𝑦〉 ∧ 𝑝1st 𝑥)) |
| 30 | 29 | anbi1i 624 |
. . . . . . 7
⊢ ((𝑝(1st ↾ (V
× V))𝑥 ∧ 𝑝 ∈ 𝐴) ↔ ((∃𝑦∃𝑧 𝑝 = 〈𝑧, 𝑦〉 ∧ 𝑝1st 𝑥) ∧ 𝑝 ∈ 𝐴)) |
| 31 | | 19.41vv 1950 |
. . . . . . 7
⊢
(∃𝑦∃𝑧(𝑝 = 〈𝑧, 𝑦〉 ∧ (𝑝1st 𝑥 ∧ 𝑝 ∈ 𝐴)) ↔ (∃𝑦∃𝑧 𝑝 = 〈𝑧, 𝑦〉 ∧ (𝑝1st 𝑥 ∧ 𝑝 ∈ 𝐴))) |
| 32 | 23, 30, 31 | 3bitr4i 303 |
. . . . . 6
⊢ ((𝑝(1st ↾ (V
× V))𝑥 ∧ 𝑝 ∈ 𝐴) ↔ ∃𝑦∃𝑧(𝑝 = 〈𝑧, 𝑦〉 ∧ (𝑝1st 𝑥 ∧ 𝑝 ∈ 𝐴))) |
| 33 | 22, 32 | bitri 275 |
. . . . 5
⊢ ((𝑝 ∈ 𝐴 ∧ 𝑝(1st ↾ (V × V))𝑥) ↔ ∃𝑦∃𝑧(𝑝 = 〈𝑧, 𝑦〉 ∧ (𝑝1st 𝑥 ∧ 𝑝 ∈ 𝐴))) |
| 34 | 33 | exbii 1848 |
. . . 4
⊢
(∃𝑝(𝑝 ∈ 𝐴 ∧ 𝑝(1st ↾ (V × V))𝑥) ↔ ∃𝑝∃𝑦∃𝑧(𝑝 = 〈𝑧, 𝑦〉 ∧ (𝑝1st 𝑥 ∧ 𝑝 ∈ 𝐴))) |
| 35 | 1, 21, 34 | 3bitr4i 303 |
. . 3
⊢
(∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ↔ ∃𝑝(𝑝 ∈ 𝐴 ∧ 𝑝(1st ↾ (V × V))𝑥)) |
| 36 | 16 | eldm2 5881 |
. . 3
⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 37 | 16 | elima2 6053 |
. . 3
⊢ (𝑥 ∈ ((1st ↾
(V × V)) “ 𝐴)
↔ ∃𝑝(𝑝 ∈ 𝐴 ∧ 𝑝(1st ↾ (V × V))𝑥)) |
| 38 | 35, 36, 37 | 3bitr4i 303 |
. 2
⊢ (𝑥 ∈ dom 𝐴 ↔ 𝑥 ∈ ((1st ↾ (V ×
V)) “ 𝐴)) |
| 39 | 38 | eqriv 2732 |
1
⊢ dom 𝐴 = ((1st ↾ (V
× V)) “ 𝐴) |