Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdm5 Structured version   Visualization version   GIF version

Theorem dfdm5 33417
Description: Definition of domain in terms of 1st and image. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
dfdm5 dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴)

Proof of Theorem dfdm5
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 excom 2168 . . . 4 (∃𝑦𝑝𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ ∃𝑝𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
2 opex 5333 . . . . . . . 8 𝑧, 𝑦⟩ ∈ V
3 breq1 5042 . . . . . . . . . 10 (𝑝 = ⟨𝑧, 𝑦⟩ → (𝑝1st 𝑥 ↔ ⟨𝑧, 𝑦⟩1st 𝑥))
4 eleq1 2818 . . . . . . . . . 10 (𝑝 = ⟨𝑧, 𝑦⟩ → (𝑝𝐴 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
53, 4anbi12d 634 . . . . . . . . 9 (𝑝 = ⟨𝑧, 𝑦⟩ → ((𝑝1st 𝑥𝑝𝐴) ↔ (⟨𝑧, 𝑦⟩1st 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴)))
6 vex 3402 . . . . . . . . . . . 12 𝑧 ∈ V
7 vex 3402 . . . . . . . . . . . 12 𝑦 ∈ V
86, 7br1steq 33415 . . . . . . . . . . 11 (⟨𝑧, 𝑦⟩1st 𝑥𝑥 = 𝑧)
9 equcom 2028 . . . . . . . . . . 11 (𝑥 = 𝑧𝑧 = 𝑥)
108, 9bitri 278 . . . . . . . . . 10 (⟨𝑧, 𝑦⟩1st 𝑥𝑧 = 𝑥)
1110anbi1i 627 . . . . . . . . 9 ((⟨𝑧, 𝑦⟩1st 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ (𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
125, 11bitrdi 290 . . . . . . . 8 (𝑝 = ⟨𝑧, 𝑦⟩ → ((𝑝1st 𝑥𝑝𝐴) ↔ (𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴)))
132, 12ceqsexv 3445 . . . . . . 7 (∃𝑝(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ (𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
1413exbii 1855 . . . . . 6 (∃𝑧𝑝(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ ∃𝑧(𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
15 excom 2168 . . . . . 6 (∃𝑧𝑝(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ ∃𝑝𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
16 vex 3402 . . . . . . 7 𝑥 ∈ V
17 opeq1 4770 . . . . . . . 8 (𝑧 = 𝑥 → ⟨𝑧, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
1817eleq1d 2815 . . . . . . 7 (𝑧 = 𝑥 → (⟨𝑧, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
1916, 18ceqsexv 3445 . . . . . 6 (∃𝑧(𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
2014, 15, 193bitr3ri 305 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑝𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
2120exbii 1855 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑦𝑝𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
22 ancom 464 . . . . . 6 ((𝑝𝐴𝑝(1st ↾ (V × V))𝑥) ↔ (𝑝(1st ↾ (V × V))𝑥𝑝𝐴))
23 anass 472 . . . . . . 7 (((∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝1st 𝑥) ∧ 𝑝𝐴) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
2416brresi 5845 . . . . . . . . 9 (𝑝(1st ↾ (V × V))𝑥 ↔ (𝑝 ∈ (V × V) ∧ 𝑝1st 𝑥))
25 elvv 5608 . . . . . . . . . . 11 (𝑝 ∈ (V × V) ↔ ∃𝑧𝑦 𝑝 = ⟨𝑧, 𝑦⟩)
26 excom 2168 . . . . . . . . . . 11 (∃𝑧𝑦 𝑝 = ⟨𝑧, 𝑦⟩ ↔ ∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩)
2725, 26bitri 278 . . . . . . . . . 10 (𝑝 ∈ (V × V) ↔ ∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩)
2827anbi1i 627 . . . . . . . . 9 ((𝑝 ∈ (V × V) ∧ 𝑝1st 𝑥) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝1st 𝑥))
2924, 28bitri 278 . . . . . . . 8 (𝑝(1st ↾ (V × V))𝑥 ↔ (∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝1st 𝑥))
3029anbi1i 627 . . . . . . 7 ((𝑝(1st ↾ (V × V))𝑥𝑝𝐴) ↔ ((∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝1st 𝑥) ∧ 𝑝𝐴))
31 19.41vv 1959 . . . . . . 7 (∃𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
3223, 30, 313bitr4i 306 . . . . . 6 ((𝑝(1st ↾ (V × V))𝑥𝑝𝐴) ↔ ∃𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
3322, 32bitri 278 . . . . 5 ((𝑝𝐴𝑝(1st ↾ (V × V))𝑥) ↔ ∃𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
3433exbii 1855 . . . 4 (∃𝑝(𝑝𝐴𝑝(1st ↾ (V × V))𝑥) ↔ ∃𝑝𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
351, 21, 343bitr4i 306 . . 3 (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑝(𝑝𝐴𝑝(1st ↾ (V × V))𝑥))
3616eldm2 5755 . . 3 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
3716elima2 5920 . . 3 (𝑥 ∈ ((1st ↾ (V × V)) “ 𝐴) ↔ ∃𝑝(𝑝𝐴𝑝(1st ↾ (V × V))𝑥))
3835, 36, 373bitr4i 306 . 2 (𝑥 ∈ dom 𝐴𝑥 ∈ ((1st ↾ (V × V)) “ 𝐴))
3938eqriv 2733 1 dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1543  wex 1787  wcel 2112  Vcvv 3398  cop 4533   class class class wbr 5039   × cxp 5534  dom cdm 5536  cres 5538  cima 5539  1st c1st 7737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-fo 6364  df-fv 6366  df-1st 7739
This theorem is referenced by:  brdomain  33921
  Copyright terms: Public domain W3C validator