MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabxp Structured version   Visualization version   GIF version

Theorem rabxp 5634
Description: Class abstraction restricted to a Cartesian product as an ordered-pair class abstraction. (Contributed by NM, 20-Feb-2014.)
Hypothesis
Ref Expression
rabxp.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
rabxp {𝑥 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵𝜓)}
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem rabxp
StepHypRef Expression
1 elxp 5611 . . . . 5 (𝑥 ∈ (𝐴 × 𝐵) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
21anbi1i 623 . . . 4 ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝜑) ↔ (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑))
3 19.41vv 1957 . . . 4 (∃𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑))
4 anass 468 . . . . . 6 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝜑)))
5 rabxp.1 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
65anbi2d 628 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑧⟩ → (((𝑦𝐴𝑧𝐵) ∧ 𝜑) ↔ ((𝑦𝐴𝑧𝐵) ∧ 𝜓)))
7 df-3an 1087 . . . . . . . 8 ((𝑦𝐴𝑧𝐵𝜓) ↔ ((𝑦𝐴𝑧𝐵) ∧ 𝜓))
86, 7bitr4di 288 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (((𝑦𝐴𝑧𝐵) ∧ 𝜑) ↔ (𝑦𝐴𝑧𝐵𝜓)))
98pm5.32i 574 . . . . . 6 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝜑)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵𝜓)))
104, 9bitri 274 . . . . 5 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵𝜓)))
11102exbii 1854 . . . 4 (∃𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵𝜓)))
122, 3, 113bitr2i 298 . . 3 ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝜑) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵𝜓)))
1312abbii 2809 . 2 {𝑥 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {𝑥 ∣ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵𝜓))}
14 df-rab 3074 . 2 {𝑥 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝜑)}
15 df-opab 5141 . 2 {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵𝜓)} = {𝑥 ∣ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵𝜓))}
1613, 14, 153eqtr4i 2777 1 {𝑥 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wex 1785  wcel 2109  {cab 2716  {crab 3069  cop 4572  {copab 5140   × cxp 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-opab 5141  df-xp 5594
This theorem is referenced by:  cicer  17499  poimirlem26  35782  dib1dim  39158  diclspsn  39187  fgraphxp  41016
  Copyright terms: Public domain W3C validator