Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabxp Structured version   Visualization version   GIF version

Theorem rabxp 5568
 Description: Class abstraction restricted to a Cartesian product as an ordered-pair class abstraction. (Contributed by NM, 20-Feb-2014.)
Hypothesis
Ref Expression
rabxp.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
rabxp {𝑥 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵𝜓)}
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem rabxp
StepHypRef Expression
1 elxp 5546 . . . . 5 (𝑥 ∈ (𝐴 × 𝐵) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)))
21anbi1i 626 . . . 4 ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝜑) ↔ (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑))
3 19.41vv 1951 . . . 4 (∃𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑))
4 anass 472 . . . . . 6 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝜑)))
5 rabxp.1 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
65anbi2d 631 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑧⟩ → (((𝑦𝐴𝑧𝐵) ∧ 𝜑) ↔ ((𝑦𝐴𝑧𝐵) ∧ 𝜓)))
7 df-3an 1086 . . . . . . . 8 ((𝑦𝐴𝑧𝐵𝜓) ↔ ((𝑦𝐴𝑧𝐵) ∧ 𝜓))
86, 7syl6bbr 292 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (((𝑦𝐴𝑧𝐵) ∧ 𝜑) ↔ (𝑦𝐴𝑧𝐵𝜓)))
98pm5.32i 578 . . . . . 6 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐴𝑧𝐵) ∧ 𝜑)) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵𝜓)))
104, 9bitri 278 . . . . 5 (((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ (𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵𝜓)))
11102exbii 1850 . . . 4 (∃𝑦𝑧((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵)) ∧ 𝜑) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵𝜓)))
122, 3, 113bitr2i 302 . . 3 ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝜑) ↔ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵𝜓)))
1312abbii 2866 . 2 {𝑥 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {𝑥 ∣ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵𝜓))}
14 df-rab 3118 . 2 {𝑥 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝜑)}
15 df-opab 5096 . 2 {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵𝜓)} = {𝑥 ∣ ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐴𝑧𝐵𝜓))}
1613, 14, 153eqtr4i 2834 1 {𝑥 ∈ (𝐴 × 𝐵) ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴𝑧𝐵𝜓)}
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ∃wex 1781   ∈ wcel 2112  {cab 2779  {crab 3113  ⟨cop 4534  {copab 5095   × cxp 5521 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-rab 3118  df-v 3446  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-opab 5096  df-xp 5529 This theorem is referenced by:  cicer  17072  poimirlem26  35082  dib1dim  38460  diclspsn  38489  fgraphxp  40152
 Copyright terms: Public domain W3C validator