Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1p3e4 Structured version   Visualization version   GIF version

Theorem 1p3e4 42232
Description: 1 + 3 = 4. (Contributed by SN, 19-Nov-2025.)
Assertion
Ref Expression
1p3e4 (1 + 3) = 4

Proof of Theorem 1p3e4
StepHypRef Expression
1 df-3 12210 . . 3 3 = (2 + 1)
21oveq2i 7364 . 2 (1 + 3) = (1 + (2 + 1))
3 ax-1cn 11086 . . 3 1 ∈ ℂ
4 2cn 12221 . . 3 2 ∈ ℂ
53, 4, 3addassi 11144 . 2 ((1 + 2) + 1) = (1 + (2 + 1))
6 1p2e3 12284 . . . 4 (1 + 2) = 3
76oveq1i 7363 . . 3 ((1 + 2) + 1) = (3 + 1)
8 3p1e4 12286 . . 3 (3 + 1) = 4
97, 8eqtri 2752 . 2 ((1 + 2) + 1) = 4
102, 5, 93eqtr2i 2758 1 (1 + 3) = 4
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7353  1c1 11029   + caddc 11031  2c2 12201  3c3 12202  4c4 12203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-1cn 11086  ax-addcl 11088  ax-addass 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356  df-2 12209  df-3 12210  df-4 12211
This theorem is referenced by:  3rdpwhole  42265
  Copyright terms: Public domain W3C validator