Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1p3e4 Structured version   Visualization version   GIF version

Theorem 1p3e4 42291
Description: 1 + 3 = 4. (Contributed by SN, 19-Nov-2025.)
Assertion
Ref Expression
1p3e4 (1 + 3) = 4

Proof of Theorem 1p3e4
StepHypRef Expression
1 df-3 12186 . . 3 3 = (2 + 1)
21oveq2i 7357 . 2 (1 + 3) = (1 + (2 + 1))
3 ax-1cn 11061 . . 3 1 ∈ ℂ
4 2cn 12197 . . 3 2 ∈ ℂ
53, 4, 3addassi 11119 . 2 ((1 + 2) + 1) = (1 + (2 + 1))
6 1p2e3 12260 . . . 4 (1 + 2) = 3
76oveq1i 7356 . . 3 ((1 + 2) + 1) = (3 + 1)
8 3p1e4 12262 . . 3 (3 + 1) = 4
97, 8eqtri 2754 . 2 ((1 + 2) + 1) = 4
102, 5, 93eqtr2i 2760 1 (1 + 3) = 4
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  (class class class)co 7346  1c1 11004   + caddc 11006  2c2 12177  3c3 12178  4c4 12179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-1cn 11061  ax-addcl 11063  ax-addass 11068
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-2 12185  df-3 12186  df-4 12187
This theorem is referenced by:  3rdpwhole  42324
  Copyright terms: Public domain W3C validator