| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1p3e4 | Structured version Visualization version GIF version | ||
| Description: 1 + 3 = 4. (Contributed by SN, 19-Nov-2025.) |
| Ref | Expression |
|---|---|
| 1p3e4 | ⊢ (1 + 3) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12309 | . . 3 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7421 | . 2 ⊢ (1 + 3) = (1 + (2 + 1)) |
| 3 | ax-1cn 11192 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2cn 12320 | . . 3 ⊢ 2 ∈ ℂ | |
| 5 | 3, 4, 3 | addassi 11250 | . 2 ⊢ ((1 + 2) + 1) = (1 + (2 + 1)) |
| 6 | 1p2e3 12388 | . . . 4 ⊢ (1 + 2) = 3 | |
| 7 | 6 | oveq1i 7420 | . . 3 ⊢ ((1 + 2) + 1) = (3 + 1) |
| 8 | 3p1e4 12390 | . . 3 ⊢ (3 + 1) = 4 | |
| 9 | 7, 8 | eqtri 2759 | . 2 ⊢ ((1 + 2) + 1) = 4 |
| 10 | 2, 5, 9 | 3eqtr2i 2765 | 1 ⊢ (1 + 3) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7410 1c1 11135 + caddc 11137 2c2 12300 3c3 12301 4c4 12302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-1cn 11192 ax-addcl 11194 ax-addass 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-2 12308 df-3 12309 df-4 12310 |
| This theorem is referenced by: 3rdpwhole 42310 |
| Copyright terms: Public domain | W3C validator |