| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1p3e4 | Structured version Visualization version GIF version | ||
| Description: 1 + 3 = 4. (Contributed by SN, 19-Nov-2025.) |
| Ref | Expression |
|---|---|
| 1p3e4 | ⊢ (1 + 3) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12186 | . . 3 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7357 | . 2 ⊢ (1 + 3) = (1 + (2 + 1)) |
| 3 | ax-1cn 11061 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2cn 12197 | . . 3 ⊢ 2 ∈ ℂ | |
| 5 | 3, 4, 3 | addassi 11119 | . 2 ⊢ ((1 + 2) + 1) = (1 + (2 + 1)) |
| 6 | 1p2e3 12260 | . . . 4 ⊢ (1 + 2) = 3 | |
| 7 | 6 | oveq1i 7356 | . . 3 ⊢ ((1 + 2) + 1) = (3 + 1) |
| 8 | 3p1e4 12262 | . . 3 ⊢ (3 + 1) = 4 | |
| 9 | 7, 8 | eqtri 2754 | . 2 ⊢ ((1 + 2) + 1) = 4 |
| 10 | 2, 5, 9 | 3eqtr2i 2760 | 1 ⊢ (1 + 3) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 1c1 11004 + caddc 11006 2c2 12177 3c3 12178 4c4 12179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11061 ax-addcl 11063 ax-addass 11068 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12185 df-3 12186 df-4 12187 |
| This theorem is referenced by: 3rdpwhole 42324 |
| Copyright terms: Public domain | W3C validator |