| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3p1e4 | Structured version Visualization version GIF version | ||
| Description: 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 3p1e4 | ⊢ (3 + 1) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12251 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ (3 + 1) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 1c1 11069 + caddc 11071 3c3 12242 4c4 12243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-4 12251 |
| This theorem is referenced by: 7t6e42 12762 8t5e40 12767 9t5e45 12774 fz0to4untppr 13591 fz0to5un2tp 13592 fac4 14246 hash4 14372 hash7g 14451 s4len 14865 bpoly4 16025 2exp16 17061 43prm 17092 83prm 17093 317prm 17096 1259lem2 17102 1259lem3 17103 1259lem4 17104 1259lem5 17105 2503lem1 17107 2503lem2 17108 4001lem1 17111 4001lem2 17112 4001lem4 17114 4001prm 17115 binom4 26760 quartlem1 26767 log2ublem3 26858 log2ub 26859 bclbnd 27191 addsqnreup 27354 tgcgr4 28458 upgr4cycl4dv4e 30114 ex-opab 30361 ex-ind-dvds 30390 evl1deg3 33547 iconstr 33756 cos9thpiminplylem1 33772 fib4 34395 fib5 34396 hgt750lem 34642 hgt750lem2 34643 3lexlogpow5ineq1 42042 3lexlogpow5ineq5 42048 aks4d1p1p5 42063 aks4d1p1 42064 1p3e4 42247 235t711 42293 3cubeslem3l 42674 3cubeslem3r 42675 inductionexd 44144 lhe4.4ex1a 44318 stoweidlem26 46024 stoweidlem34 46032 smfmullem2 46790 2ltceilhalf 47329 fmtno5lem4 47557 fmtno5 47558 fmtno5faclem2 47581 3ndvds4 47596 139prmALT 47597 31prm 47598 m5prm 47599 11t31e341 47733 2exp340mod341 47734 8exp8mod9 47737 sbgoldbalt 47782 sbgoldbo 47788 nnsum3primesle9 47795 nnsum4primeseven 47801 nnsum4primesevenALTV 47802 gpgprismgr4cycllem10 48094 ackval3 48672 ackval3012 48681 ackval41a 48683 ackval41 48684 ackval42 48685 |
| Copyright terms: Public domain | W3C validator |