| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3p1e4 | Structured version Visualization version GIF version | ||
| Description: 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 3p1e4 | ⊢ (3 + 1) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12190 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 1 | eqcomi 2740 | 1 ⊢ (3 + 1) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 1c1 11007 + caddc 11009 3c3 12181 4c4 12182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-4 12190 |
| This theorem is referenced by: 7t6e42 12701 8t5e40 12706 9t5e45 12713 fz0to4untppr 13530 fz0to5un2tp 13531 fac4 14188 hash4 14314 hash7g 14393 s4len 14806 bpoly4 15966 2exp16 17002 43prm 17033 83prm 17034 317prm 17037 1259lem2 17043 1259lem3 17044 1259lem4 17045 1259lem5 17046 2503lem1 17048 2503lem2 17049 4001lem1 17052 4001lem2 17053 4001lem4 17055 4001prm 17056 binom4 26787 quartlem1 26794 log2ublem3 26885 log2ub 26886 bclbnd 27218 addsqnreup 27381 tgcgr4 28509 upgr4cycl4dv4e 30165 ex-opab 30412 ex-ind-dvds 30441 evl1deg3 33541 iconstr 33779 cos9thpiminplylem1 33795 fib4 34417 fib5 34418 hgt750lem 34664 hgt750lem2 34665 3lexlogpow5ineq1 42095 3lexlogpow5ineq5 42101 aks4d1p1p5 42116 aks4d1p1 42117 1p3e4 42300 235t711 42346 3cubeslem3l 42727 3cubeslem3r 42728 inductionexd 44196 lhe4.4ex1a 44370 stoweidlem26 46072 stoweidlem34 46080 smfmullem2 46838 2ltceilhalf 47367 fmtno5lem4 47595 fmtno5 47596 fmtno5faclem2 47619 3ndvds4 47634 139prmALT 47635 31prm 47636 m5prm 47637 11t31e341 47771 2exp340mod341 47772 8exp8mod9 47775 sbgoldbalt 47820 sbgoldbo 47826 nnsum3primesle9 47833 nnsum4primeseven 47839 nnsum4primesevenALTV 47840 gpgprismgr4cycllem10 48143 ackval3 48723 ackval3012 48732 ackval41a 48734 ackval41 48735 ackval42 48736 |
| Copyright terms: Public domain | W3C validator |