| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3p1e4 | Structured version Visualization version GIF version | ||
| Description: 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 3p1e4 | ⊢ (3 + 1) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12227 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ (3 + 1) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 1c1 11045 + caddc 11047 3c3 12218 4c4 12219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-4 12227 |
| This theorem is referenced by: 7t6e42 12738 8t5e40 12743 9t5e45 12750 fz0to4untppr 13567 fz0to5un2tp 13568 fac4 14222 hash4 14348 hash7g 14427 s4len 14841 bpoly4 16001 2exp16 17037 43prm 17068 83prm 17069 317prm 17072 1259lem2 17078 1259lem3 17079 1259lem4 17080 1259lem5 17081 2503lem1 17083 2503lem2 17084 4001lem1 17087 4001lem2 17088 4001lem4 17090 4001prm 17091 binom4 26736 quartlem1 26743 log2ublem3 26834 log2ub 26835 bclbnd 27167 addsqnreup 27330 tgcgr4 28434 upgr4cycl4dv4e 30087 ex-opab 30334 ex-ind-dvds 30363 evl1deg3 33520 iconstr 33729 cos9thpiminplylem1 33745 fib4 34368 fib5 34369 hgt750lem 34615 hgt750lem2 34616 3lexlogpow5ineq1 42015 3lexlogpow5ineq5 42021 aks4d1p1p5 42036 aks4d1p1 42037 1p3e4 42220 235t711 42266 3cubeslem3l 42647 3cubeslem3r 42648 inductionexd 44117 lhe4.4ex1a 44291 stoweidlem26 45997 stoweidlem34 46005 smfmullem2 46763 2ltceilhalf 47302 fmtno5lem4 47530 fmtno5 47531 fmtno5faclem2 47554 3ndvds4 47569 139prmALT 47570 31prm 47571 m5prm 47572 11t31e341 47706 2exp340mod341 47707 8exp8mod9 47710 sbgoldbalt 47755 sbgoldbo 47761 nnsum3primesle9 47768 nnsum4primeseven 47774 nnsum4primesevenALTV 47775 gpgprismgr4cycllem10 48067 ackval3 48645 ackval3012 48654 ackval41a 48656 ackval41 48657 ackval42 48658 |
| Copyright terms: Public domain | W3C validator |