| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3p1e4 | Structured version Visualization version GIF version | ||
| Description: 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 3p1e4 | ⊢ (3 + 1) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12303 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 1 | eqcomi 2744 | 1 ⊢ (3 + 1) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7403 1c1 11128 + caddc 11130 3c3 12294 4c4 12295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-4 12303 |
| This theorem is referenced by: 7t6e42 12819 8t5e40 12824 9t5e45 12831 fz0to4untppr 13645 fz0to5un2tp 13646 fac4 14297 hash4 14423 hash7g 14502 s4len 14916 bpoly4 16073 2exp16 17108 43prm 17139 83prm 17140 317prm 17143 1259lem2 17149 1259lem3 17150 1259lem4 17151 1259lem5 17152 2503lem1 17154 2503lem2 17155 4001lem1 17158 4001lem2 17159 4001lem4 17161 4001prm 17162 binom4 26810 quartlem1 26817 log2ublem3 26908 log2ub 26909 bclbnd 27241 addsqnreup 27404 tgcgr4 28456 upgr4cycl4dv4e 30112 ex-opab 30359 ex-ind-dvds 30388 evl1deg3 33537 iconstr 33746 cos9thpiminplylem1 33762 fib4 34382 fib5 34383 hgt750lem 34629 hgt750lem2 34630 3lexlogpow5ineq1 42013 3lexlogpow5ineq5 42019 aks4d1p1p5 42034 aks4d1p1 42035 235t711 42301 3cubeslem3l 42656 3cubeslem3r 42657 inductionexd 44126 lhe4.4ex1a 44301 stoweidlem26 46003 stoweidlem34 46011 smfmullem2 46769 2ltceilhalf 47305 fmtno5lem4 47518 fmtno5 47519 fmtno5faclem2 47542 3ndvds4 47557 139prmALT 47558 31prm 47559 m5prm 47560 11t31e341 47694 2exp340mod341 47695 8exp8mod9 47698 sbgoldbalt 47743 sbgoldbo 47749 nnsum3primesle9 47756 nnsum4primeseven 47762 nnsum4primesevenALTV 47763 gpgprismgr4cycllem10 48051 ackval3 48611 ackval3012 48620 ackval41a 48622 ackval41 48623 ackval42 48624 |
| Copyright terms: Public domain | W3C validator |