| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3p1e4 | Structured version Visualization version GIF version | ||
| Description: 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 3p1e4 | ⊢ (3 + 1) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12193 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ (3 + 1) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 1c1 11010 + caddc 11012 3c3 12184 4c4 12185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-4 12193 |
| This theorem is referenced by: 7t6e42 12704 8t5e40 12709 9t5e45 12716 fz0to4untppr 13533 fz0to5un2tp 13534 fac4 14188 hash4 14314 hash7g 14393 s4len 14806 bpoly4 15966 2exp16 17002 43prm 17033 83prm 17034 317prm 17037 1259lem2 17043 1259lem3 17044 1259lem4 17045 1259lem5 17046 2503lem1 17048 2503lem2 17049 4001lem1 17052 4001lem2 17053 4001lem4 17055 4001prm 17056 binom4 26758 quartlem1 26765 log2ublem3 26856 log2ub 26857 bclbnd 27189 addsqnreup 27352 tgcgr4 28476 upgr4cycl4dv4e 30129 ex-opab 30376 ex-ind-dvds 30405 evl1deg3 33513 iconstr 33733 cos9thpiminplylem1 33749 fib4 34372 fib5 34373 hgt750lem 34619 hgt750lem2 34620 3lexlogpow5ineq1 42027 3lexlogpow5ineq5 42033 aks4d1p1p5 42048 aks4d1p1 42049 1p3e4 42232 235t711 42278 3cubeslem3l 42659 3cubeslem3r 42660 inductionexd 44128 lhe4.4ex1a 44302 stoweidlem26 46007 stoweidlem34 46015 smfmullem2 46773 2ltceilhalf 47312 fmtno5lem4 47540 fmtno5 47541 fmtno5faclem2 47564 3ndvds4 47579 139prmALT 47580 31prm 47581 m5prm 47582 11t31e341 47716 2exp340mod341 47717 8exp8mod9 47720 sbgoldbalt 47765 sbgoldbo 47771 nnsum3primesle9 47778 nnsum4primeseven 47784 nnsum4primesevenALTV 47785 gpgprismgr4cycllem10 48088 ackval3 48668 ackval3012 48677 ackval41a 48679 ackval41 48680 ackval42 48681 |
| Copyright terms: Public domain | W3C validator |