| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3p1e4 | Structured version Visualization version GIF version | ||
| Description: 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 3p1e4 | ⊢ (3 + 1) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12258 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 1 | eqcomi 2739 | 1 ⊢ (3 + 1) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 1c1 11076 + caddc 11078 3c3 12249 4c4 12250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-4 12258 |
| This theorem is referenced by: 7t6e42 12769 8t5e40 12774 9t5e45 12781 fz0to4untppr 13598 fz0to5un2tp 13599 fac4 14253 hash4 14379 hash7g 14458 s4len 14872 bpoly4 16032 2exp16 17068 43prm 17099 83prm 17100 317prm 17103 1259lem2 17109 1259lem3 17110 1259lem4 17111 1259lem5 17112 2503lem1 17114 2503lem2 17115 4001lem1 17118 4001lem2 17119 4001lem4 17121 4001prm 17122 binom4 26767 quartlem1 26774 log2ublem3 26865 log2ub 26866 bclbnd 27198 addsqnreup 27361 tgcgr4 28465 upgr4cycl4dv4e 30121 ex-opab 30368 ex-ind-dvds 30397 evl1deg3 33554 iconstr 33763 cos9thpiminplylem1 33779 fib4 34402 fib5 34403 hgt750lem 34649 hgt750lem2 34650 3lexlogpow5ineq1 42049 3lexlogpow5ineq5 42055 aks4d1p1p5 42070 aks4d1p1 42071 1p3e4 42254 235t711 42300 3cubeslem3l 42681 3cubeslem3r 42682 inductionexd 44151 lhe4.4ex1a 44325 stoweidlem26 46031 stoweidlem34 46039 smfmullem2 46797 2ltceilhalf 47333 fmtno5lem4 47561 fmtno5 47562 fmtno5faclem2 47585 3ndvds4 47600 139prmALT 47601 31prm 47602 m5prm 47603 11t31e341 47737 2exp340mod341 47738 8exp8mod9 47741 sbgoldbalt 47786 sbgoldbo 47792 nnsum3primesle9 47799 nnsum4primeseven 47805 nnsum4primesevenALTV 47806 gpgprismgr4cycllem10 48098 ackval3 48676 ackval3012 48685 ackval41a 48687 ackval41 48688 ackval42 48689 |
| Copyright terms: Public domain | W3C validator |