| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3p1e4 | Structured version Visualization version GIF version | ||
| Description: 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 3p1e4 | ⊢ (3 + 1) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12227 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ (3 + 1) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 1c1 11045 + caddc 11047 3c3 12218 4c4 12219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-4 12227 |
| This theorem is referenced by: 7t6e42 12738 8t5e40 12743 9t5e45 12750 fz0to4untppr 13567 fz0to5un2tp 13568 fac4 14222 hash4 14348 hash7g 14427 s4len 14841 bpoly4 16001 2exp16 17037 43prm 17068 83prm 17069 317prm 17072 1259lem2 17078 1259lem3 17079 1259lem4 17080 1259lem5 17081 2503lem1 17083 2503lem2 17084 4001lem1 17087 4001lem2 17088 4001lem4 17090 4001prm 17091 binom4 26793 quartlem1 26800 log2ublem3 26891 log2ub 26892 bclbnd 27224 addsqnreup 27387 tgcgr4 28511 upgr4cycl4dv4e 30164 ex-opab 30411 ex-ind-dvds 30440 evl1deg3 33540 iconstr 33749 cos9thpiminplylem1 33765 fib4 34388 fib5 34389 hgt750lem 34635 hgt750lem2 34636 3lexlogpow5ineq1 42035 3lexlogpow5ineq5 42041 aks4d1p1p5 42056 aks4d1p1 42057 1p3e4 42240 235t711 42286 3cubeslem3l 42667 3cubeslem3r 42668 inductionexd 44137 lhe4.4ex1a 44311 stoweidlem26 46017 stoweidlem34 46025 smfmullem2 46783 2ltceilhalf 47322 fmtno5lem4 47550 fmtno5 47551 fmtno5faclem2 47574 3ndvds4 47589 139prmALT 47590 31prm 47591 m5prm 47592 11t31e341 47726 2exp340mod341 47727 8exp8mod9 47730 sbgoldbalt 47775 sbgoldbo 47781 nnsum3primesle9 47788 nnsum4primeseven 47794 nnsum4primesevenALTV 47795 gpgprismgr4cycllem10 48087 ackval3 48665 ackval3012 48674 ackval41a 48676 ackval41 48677 ackval42 48678 |
| Copyright terms: Public domain | W3C validator |