Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3p1e4 | Structured version Visualization version GIF version |
Description: 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
3p1e4 | ⊢ (3 + 1) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 11943 | . 2 ⊢ 4 = (3 + 1) | |
2 | 1 | eqcomi 2748 | 1 ⊢ (3 + 1) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 (class class class)co 7252 1c1 10778 + caddc 10780 3c3 11934 4c4 11935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-cleq 2731 df-4 11943 |
This theorem is referenced by: 7t6e42 12454 8t5e40 12459 9t5e45 12466 fac4 13898 hash4 14025 s4len 14515 bpoly4 15672 2exp16 16695 43prm 16726 83prm 16727 317prm 16730 1259lem2 16736 1259lem3 16737 1259lem4 16738 1259lem5 16739 2503lem1 16741 2503lem2 16742 4001lem1 16745 4001lem2 16746 4001lem4 16748 4001prm 16749 binom4 25880 quartlem1 25887 log2ublem3 25978 log2ub 25979 bclbnd 26308 addsqnreup 26471 tgcgr4 26771 upgr4cycl4dv4e 28425 ex-opab 28672 ex-ind-dvds 28701 fib4 32246 fib5 32247 hgt750lem 32506 hgt750lem2 32507 3lexlogpow5ineq1 39969 3lexlogpow5ineq5 39975 aks4d1p1p5 39989 aks4d1p1 39990 235t711 40212 3cubeslem3l 40396 3cubeslem3r 40397 inductionexd 41627 lhe4.4ex1a 41809 stoweidlem26 43430 stoweidlem34 43438 smfmullem2 44186 fmtno5lem4 44869 fmtno5 44870 fmtno5faclem2 44893 3ndvds4 44908 139prmALT 44909 31prm 44910 m5prm 44911 11t31e341 45045 2exp340mod341 45046 8exp8mod9 45049 sbgoldbalt 45094 sbgoldbo 45100 nnsum3primesle9 45107 nnsum4primeseven 45113 nnsum4primesevenALTV 45114 ackval3 45890 ackval3012 45899 ackval41a 45901 ackval41 45902 ackval42 45903 |
Copyright terms: Public domain | W3C validator |