![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3p1e4 | Structured version Visualization version GIF version |
Description: 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
3p1e4 | ⊢ (3 + 1) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 12328 | . 2 ⊢ 4 = (3 + 1) | |
2 | 1 | eqcomi 2743 | 1 ⊢ (3 + 1) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 (class class class)co 7430 1c1 11153 + caddc 11155 3c3 12319 4c4 12320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-4 12328 |
This theorem is referenced by: 7t6e42 12843 8t5e40 12848 9t5e45 12855 fz0to4untppr 13666 fz0to5un2tp 13667 fac4 14316 hash4 14442 hash7g 14521 s4len 14934 bpoly4 16091 2exp16 17124 43prm 17155 83prm 17156 317prm 17159 1259lem2 17165 1259lem3 17166 1259lem4 17167 1259lem5 17168 2503lem1 17170 2503lem2 17171 4001lem1 17174 4001lem2 17175 4001lem4 17177 4001prm 17178 binom4 26907 quartlem1 26914 log2ublem3 27005 log2ub 27006 bclbnd 27338 addsqnreup 27501 tgcgr4 28553 upgr4cycl4dv4e 30213 ex-opab 30460 ex-ind-dvds 30489 evl1deg3 33582 fib4 34385 fib5 34386 hgt750lem 34644 hgt750lem2 34645 3lexlogpow5ineq1 42035 3lexlogpow5ineq5 42041 aks4d1p1p5 42056 aks4d1p1 42057 235t711 42317 3cubeslem3l 42673 3cubeslem3r 42674 inductionexd 44144 lhe4.4ex1a 44324 stoweidlem26 45981 stoweidlem34 45989 smfmullem2 46747 fmtno5lem4 47480 fmtno5 47481 fmtno5faclem2 47504 3ndvds4 47519 139prmALT 47520 31prm 47521 m5prm 47522 11t31e341 47656 2exp340mod341 47657 8exp8mod9 47660 sbgoldbalt 47705 sbgoldbo 47711 nnsum3primesle9 47718 nnsum4primeseven 47724 nnsum4primesevenALTV 47725 2ltceilhalf 47949 ackval3 48532 ackval3012 48541 ackval41a 48543 ackval41 48544 ackval42 48545 |
Copyright terms: Public domain | W3C validator |