![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3p1e4 | Structured version Visualization version GIF version |
Description: 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
3p1e4 | ⊢ (3 + 1) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 12358 | . 2 ⊢ 4 = (3 + 1) | |
2 | 1 | eqcomi 2749 | 1 ⊢ (3 + 1) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 1c1 11185 + caddc 11187 3c3 12349 4c4 12350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-4 12358 |
This theorem is referenced by: 7t6e42 12871 8t5e40 12876 9t5e45 12883 fz0to4untppr 13687 fz0to5un2tp 13688 fac4 14330 hash4 14456 hash7g 14535 s4len 14948 bpoly4 16107 2exp16 17138 43prm 17169 83prm 17170 317prm 17173 1259lem2 17179 1259lem3 17180 1259lem4 17181 1259lem5 17182 2503lem1 17184 2503lem2 17185 4001lem1 17188 4001lem2 17189 4001lem4 17191 4001prm 17192 binom4 26911 quartlem1 26918 log2ublem3 27009 log2ub 27010 bclbnd 27342 addsqnreup 27505 tgcgr4 28557 upgr4cycl4dv4e 30217 ex-opab 30464 ex-ind-dvds 30493 evl1deg3 33568 fib4 34369 fib5 34370 hgt750lem 34628 hgt750lem2 34629 3lexlogpow5ineq1 42011 3lexlogpow5ineq5 42017 aks4d1p1p5 42032 aks4d1p1 42033 235t711 42293 3cubeslem3l 42642 3cubeslem3r 42643 inductionexd 44117 lhe4.4ex1a 44298 stoweidlem26 45947 stoweidlem34 45955 smfmullem2 46713 fmtno5lem4 47430 fmtno5 47431 fmtno5faclem2 47454 3ndvds4 47469 139prmALT 47470 31prm 47471 m5prm 47472 11t31e341 47606 2exp340mod341 47607 8exp8mod9 47610 sbgoldbalt 47655 sbgoldbo 47661 nnsum3primesle9 47668 nnsum4primeseven 47674 nnsum4primesevenALTV 47675 ackval3 48417 ackval3012 48426 ackval41a 48428 ackval41 48429 ackval42 48430 |
Copyright terms: Public domain | W3C validator |