| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-4 | Structured version Visualization version GIF version | ||
| Description: Define the number 4. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| df-4 | ⊢ 4 = (3 + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c4 12243 | . 2 class 4 | |
| 2 | c3 12242 | . . 3 class 3 | |
| 3 | c1 11069 | . . 3 class 1 | |
| 4 | caddc 11071 | . . 3 class + | |
| 5 | 2, 3, 4 | co 7387 | . 2 class (3 + 1) |
| 6 | 1, 5 | wceq 1540 | 1 wff 4 = (3 + 1) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 4nn 12269 4re 12270 4cn 12271 4pos 12293 4m1e3 12310 2p2e4 12316 3p1e4 12326 3p2e5 12332 4p4e8 12336 5p4e9 12339 3lt4 12355 6p4e10 12721 7p4e11 12725 7p7e14 12728 8p4e12 12731 8p6e14 12733 9p4e13 12738 9p5e14 12739 4t4e16 12748 5t4e20 12751 6t4e24 12755 7t4e28 12760 8t4e32 12766 9t4e36 12773 fz0to4untppr 13591 4bc2eq6 14294 bpoly3 16024 bpoly4 16025 fsumcube 16026 ef4p 16081 ef01bndlem 16152 ge2nprmge4 16671 lt6abl 19825 cphipval 25143 sincosq4sgn 26410 binom4 26760 quart1lem 26765 log2cnv 26854 ppiublem2 27114 ppiub 27115 chtub 27123 bclbnd 27191 bposlem8 27202 lgsdir2lem3 27238 3wlkdlem1 30088 ipval2 30636 problem3 35654 aks4d1p1p7 42062 rmydioph 43003 rmxdioph 43005 expdiophlem2 43011 lt4addmuld 45304 stoweidlem13 46011 m1modnep2mod 47353 4even 47710 sbgoldbo 47788 ackval40 48682 ackval41a 48683 ackval42 48685 |
| Copyright terms: Public domain | W3C validator |