Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-4 | Structured version Visualization version GIF version |
Description: Define the number 4. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-4 | ⊢ 4 = (3 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c4 11960 | . 2 class 4 | |
2 | c3 11959 | . . 3 class 3 | |
3 | c1 10803 | . . 3 class 1 | |
4 | caddc 10805 | . . 3 class + | |
5 | 2, 3, 4 | co 7255 | . 2 class (3 + 1) |
6 | 1, 5 | wceq 1539 | 1 wff 4 = (3 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 4nn 11986 4re 11987 4cn 11988 4pos 12010 4m1e3 12032 2p2e4 12038 3p1e4 12048 3p2e5 12054 4p4e8 12058 5p4e9 12061 3lt4 12077 halfpm6th 12124 6p4e10 12438 7p4e11 12442 7p7e14 12445 8p4e12 12448 8p6e14 12450 9p4e13 12455 9p5e14 12456 4t4e16 12465 5t4e20 12468 6t4e24 12472 7t4e28 12477 8t4e32 12483 9t4e36 12490 fz0to4untppr 13288 4bc2eq6 13971 bpoly3 15696 bpoly4 15697 fsumcube 15698 ef4p 15750 ef01bndlem 15821 ge2nprmge4 16334 lt6abl 19411 cphipval 24312 sincosq4sgn 25563 binom4 25905 quart1lem 25910 log2cnv 25999 ppiublem2 26256 ppiub 26257 chtub 26265 bclbnd 26333 bposlem8 26344 lgsdir2lem3 26380 3wlkdlem1 28424 ipval2 28970 problem3 33525 aks4d1p1p7 40010 rmydioph 40752 rmxdioph 40754 expdiophlem2 40760 lt4addmuld 42735 stoweidlem13 43444 4even 45049 sbgoldbo 45127 ackval40 45927 ackval41a 45928 ackval42 45930 |
Copyright terms: Public domain | W3C validator |