Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-4 | Structured version Visualization version GIF version |
Description: Define the number 4. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-4 | ⊢ 4 = (3 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c4 12039 | . 2 class 4 | |
2 | c3 12038 | . . 3 class 3 | |
3 | c1 10881 | . . 3 class 1 | |
4 | caddc 10883 | . . 3 class + | |
5 | 2, 3, 4 | co 7284 | . 2 class (3 + 1) |
6 | 1, 5 | wceq 1539 | 1 wff 4 = (3 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 4nn 12065 4re 12066 4cn 12067 4pos 12089 4m1e3 12111 2p2e4 12117 3p1e4 12127 3p2e5 12133 4p4e8 12137 5p4e9 12140 3lt4 12156 halfpm6th 12203 6p4e10 12518 7p4e11 12522 7p7e14 12525 8p4e12 12528 8p6e14 12530 9p4e13 12535 9p5e14 12536 4t4e16 12545 5t4e20 12548 6t4e24 12552 7t4e28 12557 8t4e32 12563 9t4e36 12570 fz0to4untppr 13368 4bc2eq6 14052 bpoly3 15777 bpoly4 15778 fsumcube 15779 ef4p 15831 ef01bndlem 15902 ge2nprmge4 16415 lt6abl 19505 cphipval 24416 sincosq4sgn 25667 binom4 26009 quart1lem 26014 log2cnv 26103 ppiublem2 26360 ppiub 26361 chtub 26369 bclbnd 26437 bposlem8 26448 lgsdir2lem3 26484 3wlkdlem1 28532 ipval2 29078 problem3 33634 aks4d1p1p7 40089 rmydioph 40843 rmxdioph 40845 expdiophlem2 40851 lt4addmuld 42852 stoweidlem13 43561 4even 45172 sbgoldbo 45250 ackval40 46050 ackval41a 46051 ackval42 46053 |
Copyright terms: Public domain | W3C validator |