MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p2e3 Structured version   Visualization version   GIF version

Theorem 1p2e3 12406
Description: 1 + 2 = 3. For a shorter proof using addcomli 11450, see 1p2e3ALT 12407. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 12-Dec-2022.)
Assertion
Ref Expression
1p2e3 (1 + 2) = 3

Proof of Theorem 1p2e3
StepHypRef Expression
1 df-2 12326 . . 3 2 = (1 + 1)
21oveq2i 7441 . 2 (1 + 2) = (1 + (1 + 1))
3 ax-1cn 11210 . . 3 1 ∈ ℂ
43, 3, 3addassi 11268 . 2 ((1 + 1) + 1) = (1 + (1 + 1))
5 1p1e2 12388 . . . 4 (1 + 1) = 2
65oveq1i 7440 . . 3 ((1 + 1) + 1) = (2 + 1)
7 2p1e3 12405 . . 3 (2 + 1) = 3
86, 7eqtri 2762 . 2 ((1 + 1) + 1) = 3
92, 4, 83eqtr2i 2768 1 (1 + 2) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  (class class class)co 7430  1c1 11153   + caddc 11155  2c2 12318  3c3 12319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-1cn 11210  ax-addass 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-iota 6515  df-fv 6570  df-ov 7433  df-2 12326  df-3 12327
This theorem is referenced by:  fzo1to4tp  13789  binom3  14259  3lcm2e6woprm  16648  prmgaplem7  17090  2exp16  17124  prmlem1a  17140  23prm  17152  prmlem2  17153  83prm  17156  139prm  17157  163prm  17158  317prm  17159  631prm  17160  1259lem4  17167  1259prm  17169  2503lem2  17171  2503lem3  17172  4001lem2  17175  quart1lem  26912  log2ublem3  27005  log2ub  27006  pntibndlem2  27649  1kp2ke3k  30474  ex-ind-dvds  30489  fib4  34385  2np3bcnp1  42125  2xp3dxp2ge1d  42222  ex-decpmul  42318  sn-0ne2  42412  3cubeslem3r  42674  rabren3dioph  42802  fmtno4nprmfac193  47498  139prmALT  47520  127prm  47523  nnsum4primesodd  47720  nnsum4primesoddALTV  47721  ackval1012  48539
  Copyright terms: Public domain W3C validator