MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p2e3 Structured version   Visualization version   GIF version

Theorem 1p2e3 12385
Description: 1 + 2 = 3. For a shorter proof using addcomli 11436, see 1p2e3ALT 12386. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 12-Dec-2022.)
Assertion
Ref Expression
1p2e3 (1 + 2) = 3

Proof of Theorem 1p2e3
StepHypRef Expression
1 df-2 12305 . . 3 2 = (1 + 1)
21oveq2i 7431 . 2 (1 + 2) = (1 + (1 + 1))
3 ax-1cn 11196 . . 3 1 ∈ ℂ
43, 3, 3addassi 11254 . 2 ((1 + 1) + 1) = (1 + (1 + 1))
5 1p1e2 12367 . . . 4 (1 + 1) = 2
65oveq1i 7430 . . 3 ((1 + 1) + 1) = (2 + 1)
7 2p1e3 12384 . . 3 (2 + 1) = 3
86, 7eqtri 2756 . 2 ((1 + 1) + 1) = 3
92, 4, 83eqtr2i 2762 1 (1 + 2) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  (class class class)co 7420  1c1 11139   + caddc 11141  2c2 12297  3c3 12298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-1cn 11196  ax-addass 11203
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-iota 6500  df-fv 6556  df-ov 7423  df-2 12305  df-3 12306
This theorem is referenced by:  fzo1to4tp  13752  binom3  14218  3lcm2e6woprm  16585  prmgaplem7  17025  2exp16  17059  prmlem1a  17075  23prm  17087  prmlem2  17088  83prm  17091  139prm  17092  163prm  17093  317prm  17094  631prm  17095  1259lem4  17102  1259prm  17104  2503lem2  17106  2503lem3  17107  4001lem2  17110  quart1lem  26786  log2ublem3  26879  log2ub  26880  pntibndlem2  27523  1kp2ke3k  30255  ex-ind-dvds  30270  fib4  34024  2np3bcnp1  41616  2xp3dxp2ge1d  41693  ex-decpmul  41868  sn-0ne2  41961  3cubeslem3r  42107  rabren3dioph  42235  fmtno4nprmfac193  46914  139prmALT  46936  127prm  46939  nnsum4primesodd  47136  nnsum4primesoddALTV  47137  ackval1012  47763
  Copyright terms: Public domain W3C validator