| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1p2e3 | Structured version Visualization version GIF version | ||
| Description: 1 + 2 = 3. For a shorter proof using addcomli 11308, see 1p2e3ALT 12267. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 12-Dec-2022.) |
| Ref | Expression |
|---|---|
| 1p2e3 | ⊢ (1 + 2) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12191 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7360 | . 2 ⊢ (1 + 2) = (1 + (1 + 1)) |
| 3 | ax-1cn 11067 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 3, 3, 3 | addassi 11125 | . 2 ⊢ ((1 + 1) + 1) = (1 + (1 + 1)) |
| 5 | 1p1e2 12248 | . . . 4 ⊢ (1 + 1) = 2 | |
| 6 | 5 | oveq1i 7359 | . . 3 ⊢ ((1 + 1) + 1) = (2 + 1) |
| 7 | 2p1e3 12265 | . . 3 ⊢ (2 + 1) = 3 | |
| 8 | 6, 7 | eqtri 2752 | . 2 ⊢ ((1 + 1) + 1) = 3 |
| 9 | 2, 4, 8 | 3eqtr2i 2758 | 1 ⊢ (1 + 2) = 3 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 1c1 11010 + caddc 11012 2c2 12183 3c3 12184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11067 ax-addass 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-2 12191 df-3 12192 |
| This theorem is referenced by: fzo1to4tp 13657 binom3 14131 3lcm2e6woprm 16526 prmgaplem7 16969 2exp16 17002 prmlem1a 17018 23prm 17030 prmlem2 17031 83prm 17034 139prm 17035 163prm 17036 317prm 17037 631prm 17038 1259lem4 17045 1259prm 17047 2503lem2 17049 2503lem3 17050 4001lem2 17053 quart1lem 26763 log2ublem3 26856 log2ub 26857 pntibndlem2 27500 1kp2ke3k 30390 ex-ind-dvds 30405 cos9thpiminplylem2 33750 fib4 34372 2np3bcnp1 42117 1p3e4 42232 ex-decpmul 42279 sn-0ne2 42379 3cubeslem3r 42660 rabren3dioph 42788 modm2nep1 47350 fmtno4nprmfac193 47558 139prmALT 47580 127prm 47583 nnsum4primesodd 47780 nnsum4primesoddALTV 47781 pgnbgreunbgrlem2lem1 48098 gpg5edgnedg 48114 ackval1012 48675 |
| Copyright terms: Public domain | W3C validator |