MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p2e3 Structured version   Visualization version   GIF version

Theorem 1p2e3 12436
Description: 1 + 2 = 3. For a shorter proof using addcomli 11482, see 1p2e3ALT 12437. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 12-Dec-2022.)
Assertion
Ref Expression
1p2e3 (1 + 2) = 3

Proof of Theorem 1p2e3
StepHypRef Expression
1 df-2 12356 . . 3 2 = (1 + 1)
21oveq2i 7459 . 2 (1 + 2) = (1 + (1 + 1))
3 ax-1cn 11242 . . 3 1 ∈ ℂ
43, 3, 3addassi 11300 . 2 ((1 + 1) + 1) = (1 + (1 + 1))
5 1p1e2 12418 . . . 4 (1 + 1) = 2
65oveq1i 7458 . . 3 ((1 + 1) + 1) = (2 + 1)
7 2p1e3 12435 . . 3 (2 + 1) = 3
86, 7eqtri 2768 . 2 ((1 + 1) + 1) = 3
92, 4, 83eqtr2i 2774 1 (1 + 2) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  (class class class)co 7448  1c1 11185   + caddc 11187  2c2 12348  3c3 12349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-1cn 11242  ax-addass 11249
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-2 12356  df-3 12357
This theorem is referenced by:  fzo1to4tp  13804  binom3  14273  3lcm2e6woprm  16662  prmgaplem7  17104  2exp16  17138  prmlem1a  17154  23prm  17166  prmlem2  17167  83prm  17170  139prm  17171  163prm  17172  317prm  17173  631prm  17174  1259lem4  17181  1259prm  17183  2503lem2  17185  2503lem3  17186  4001lem2  17189  quart1lem  26916  log2ublem3  27009  log2ub  27010  pntibndlem2  27653  1kp2ke3k  30478  ex-ind-dvds  30493  fib4  34369  2np3bcnp1  42101  2xp3dxp2ge1d  42198  ex-decpmul  42294  sn-0ne2  42382  3cubeslem3r  42643  rabren3dioph  42771  fmtno4nprmfac193  47448  139prmALT  47470  127prm  47473  nnsum4primesodd  47670  nnsum4primesoddALTV  47671  ackval1012  48424
  Copyright terms: Public domain W3C validator