MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p2e3 Structured version   Visualization version   GIF version

Theorem 1p2e3 12046
Description: 1 + 2 = 3. For a shorter proof using addcomli 11097, see 1p2e3ALT 12047. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 12-Dec-2022.)
Assertion
Ref Expression
1p2e3 (1 + 2) = 3

Proof of Theorem 1p2e3
StepHypRef Expression
1 df-2 11966 . . 3 2 = (1 + 1)
21oveq2i 7266 . 2 (1 + 2) = (1 + (1 + 1))
3 ax-1cn 10860 . . 3 1 ∈ ℂ
43, 3, 3addassi 10916 . 2 ((1 + 1) + 1) = (1 + (1 + 1))
5 1p1e2 12028 . . . 4 (1 + 1) = 2
65oveq1i 7265 . . 3 ((1 + 1) + 1) = (2 + 1)
7 2p1e3 12045 . . 3 (2 + 1) = 3
86, 7eqtri 2766 . 2 ((1 + 1) + 1) = 3
92, 4, 83eqtr2i 2772 1 (1 + 2) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  (class class class)co 7255  1c1 10803   + caddc 10805  2c2 11958  3c3 11959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-1cn 10860  ax-addass 10867
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-2 11966  df-3 11967
This theorem is referenced by:  fzo1to4tp  13403  binom3  13867  3lcm2e6woprm  16248  prmgaplem7  16686  2exp16  16720  prmlem1a  16736  23prm  16748  prmlem2  16749  83prm  16752  139prm  16753  163prm  16754  317prm  16755  631prm  16756  1259lem4  16763  1259prm  16765  2503lem2  16767  2503lem3  16768  4001lem2  16771  quart1lem  25910  log2ublem3  26003  log2ub  26004  pntibndlem2  26644  1kp2ke3k  28711  ex-ind-dvds  28726  fib4  32271  2np3bcnp1  40028  2xp3dxp2ge1d  40090  ex-decpmul  40241  sn-0ne2  40310  3cubeslem3r  40425  rabren3dioph  40553  fmtno4nprmfac193  44914  139prmALT  44936  127prm  44939  nnsum4primesodd  45136  nnsum4primesoddALTV  45137  ackval1012  45924
  Copyright terms: Public domain W3C validator