| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1p2e3 | Structured version Visualization version GIF version | ||
| Description: 1 + 2 = 3. For a shorter proof using addcomli 11342, see 1p2e3ALT 12301. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 12-Dec-2022.) |
| Ref | Expression |
|---|---|
| 1p2e3 | ⊢ (1 + 2) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12225 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7380 | . 2 ⊢ (1 + 2) = (1 + (1 + 1)) |
| 3 | ax-1cn 11102 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 3, 3, 3 | addassi 11160 | . 2 ⊢ ((1 + 1) + 1) = (1 + (1 + 1)) |
| 5 | 1p1e2 12282 | . . . 4 ⊢ (1 + 1) = 2 | |
| 6 | 5 | oveq1i 7379 | . . 3 ⊢ ((1 + 1) + 1) = (2 + 1) |
| 7 | 2p1e3 12299 | . . 3 ⊢ (2 + 1) = 3 | |
| 8 | 6, 7 | eqtri 2752 | . 2 ⊢ ((1 + 1) + 1) = 3 |
| 9 | 2, 4, 8 | 3eqtr2i 2758 | 1 ⊢ (1 + 2) = 3 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 1c1 11045 + caddc 11047 2c2 12217 3c3 12218 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-addass 11109 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 df-3 12226 |
| This theorem is referenced by: fzo1to4tp 13691 binom3 14165 3lcm2e6woprm 16561 prmgaplem7 17004 2exp16 17037 prmlem1a 17053 23prm 17065 prmlem2 17066 83prm 17069 139prm 17070 163prm 17071 317prm 17072 631prm 17073 1259lem4 17080 1259prm 17082 2503lem2 17084 2503lem3 17085 4001lem2 17088 quart1lem 26798 log2ublem3 26891 log2ub 26892 pntibndlem2 27535 1kp2ke3k 30425 ex-ind-dvds 30440 cos9thpiminplylem2 33766 fib4 34388 2np3bcnp1 42125 1p3e4 42240 ex-decpmul 42287 sn-0ne2 42387 3cubeslem3r 42668 rabren3dioph 42796 modm2nep1 47360 fmtno4nprmfac193 47568 139prmALT 47590 127prm 47593 nnsum4primesodd 47790 nnsum4primesoddALTV 47791 pgnbgreunbgrlem2lem1 48097 ackval1012 48672 |
| Copyright terms: Public domain | W3C validator |