| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1p2e3 | Structured version Visualization version GIF version | ||
| Description: 1 + 2 = 3. For a shorter proof using addcomli 11305, see 1p2e3ALT 12264. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 12-Dec-2022.) |
| Ref | Expression |
|---|---|
| 1p2e3 | ⊢ (1 + 2) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12188 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7357 | . 2 ⊢ (1 + 2) = (1 + (1 + 1)) |
| 3 | ax-1cn 11064 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 3, 3, 3 | addassi 11122 | . 2 ⊢ ((1 + 1) + 1) = (1 + (1 + 1)) |
| 5 | 1p1e2 12245 | . . . 4 ⊢ (1 + 1) = 2 | |
| 6 | 5 | oveq1i 7356 | . . 3 ⊢ ((1 + 1) + 1) = (2 + 1) |
| 7 | 2p1e3 12262 | . . 3 ⊢ (2 + 1) = 3 | |
| 8 | 6, 7 | eqtri 2754 | . 2 ⊢ ((1 + 1) + 1) = 3 |
| 9 | 2, 4, 8 | 3eqtr2i 2760 | 1 ⊢ (1 + 2) = 3 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 1c1 11007 + caddc 11009 2c2 12180 3c3 12181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-addass 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 df-3 12189 |
| This theorem is referenced by: fzo1to4tp 13654 binom3 14131 3lcm2e6woprm 16526 prmgaplem7 16969 2exp16 17002 prmlem1a 17018 23prm 17030 prmlem2 17031 83prm 17034 139prm 17035 163prm 17036 317prm 17037 631prm 17038 1259lem4 17045 1259prm 17047 2503lem2 17049 2503lem3 17050 4001lem2 17053 quart1lem 26792 log2ublem3 26885 log2ub 26886 pntibndlem2 27529 1kp2ke3k 30426 ex-ind-dvds 30441 cos9thpiminplylem2 33796 fib4 34417 2np3bcnp1 42185 1p3e4 42300 ex-decpmul 42347 sn-0ne2 42447 3cubeslem3r 42728 rabren3dioph 42856 modm2nep1 47405 fmtno4nprmfac193 47613 139prmALT 47635 127prm 47638 nnsum4primesodd 47835 nnsum4primesoddALTV 47836 pgnbgreunbgrlem2lem1 48153 gpg5edgnedg 48169 ackval1012 48730 |
| Copyright terms: Public domain | W3C validator |