MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p2e3 Structured version   Visualization version   GIF version

Theorem 1p2e3 12351
Description: 1 + 2 = 3. For a shorter proof using addcomli 11402, see 1p2e3ALT 12352. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 12-Dec-2022.)
Assertion
Ref Expression
1p2e3 (1 + 2) = 3

Proof of Theorem 1p2e3
StepHypRef Expression
1 df-2 12271 . . 3 2 = (1 + 1)
21oveq2i 7416 . 2 (1 + 2) = (1 + (1 + 1))
3 ax-1cn 11164 . . 3 1 ∈ ℂ
43, 3, 3addassi 11220 . 2 ((1 + 1) + 1) = (1 + (1 + 1))
5 1p1e2 12333 . . . 4 (1 + 1) = 2
65oveq1i 7415 . . 3 ((1 + 1) + 1) = (2 + 1)
7 2p1e3 12350 . . 3 (2 + 1) = 3
86, 7eqtri 2760 . 2 ((1 + 1) + 1) = 3
92, 4, 83eqtr2i 2766 1 (1 + 2) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  (class class class)co 7405  1c1 11107   + caddc 11109  2c2 12263  3c3 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-1cn 11164  ax-addass 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548  df-ov 7408  df-2 12271  df-3 12272
This theorem is referenced by:  fzo1to4tp  13716  binom3  14183  3lcm2e6woprm  16548  prmgaplem7  16986  2exp16  17020  prmlem1a  17036  23prm  17048  prmlem2  17049  83prm  17052  139prm  17053  163prm  17054  317prm  17055  631prm  17056  1259lem4  17063  1259prm  17065  2503lem2  17067  2503lem3  17068  4001lem2  17071  quart1lem  26349  log2ublem3  26442  log2ub  26443  pntibndlem2  27083  1kp2ke3k  29688  ex-ind-dvds  29703  fib4  33391  2np3bcnp1  40948  2xp3dxp2ge1d  41010  ex-decpmul  41201  sn-0ne2  41275  3cubeslem3r  41410  rabren3dioph  41538  fmtno4nprmfac193  46228  139prmALT  46250  127prm  46253  nnsum4primesodd  46450  nnsum4primesoddALTV  46451  ackval1012  47329
  Copyright terms: Public domain W3C validator