MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p2e3 Structured version   Visualization version   GIF version

Theorem 1p2e3 12391
Description: 1 + 2 = 3. For a shorter proof using addcomli 11435, see 1p2e3ALT 12392. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 12-Dec-2022.)
Assertion
Ref Expression
1p2e3 (1 + 2) = 3

Proof of Theorem 1p2e3
StepHypRef Expression
1 df-2 12311 . . 3 2 = (1 + 1)
21oveq2i 7424 . 2 (1 + 2) = (1 + (1 + 1))
3 ax-1cn 11195 . . 3 1 ∈ ℂ
43, 3, 3addassi 11253 . 2 ((1 + 1) + 1) = (1 + (1 + 1))
5 1p1e2 12373 . . . 4 (1 + 1) = 2
65oveq1i 7423 . . 3 ((1 + 1) + 1) = (2 + 1)
7 2p1e3 12390 . . 3 (2 + 1) = 3
86, 7eqtri 2757 . 2 ((1 + 1) + 1) = 3
92, 4, 83eqtr2i 2763 1 (1 + 2) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  (class class class)co 7413  1c1 11138   + caddc 11140  2c2 12303  3c3 12304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-1cn 11195  ax-addass 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6494  df-fv 6549  df-ov 7416  df-2 12311  df-3 12312
This theorem is referenced by:  fzo1to4tp  13775  binom3  14245  3lcm2e6woprm  16634  prmgaplem7  17077  2exp16  17110  prmlem1a  17126  23prm  17138  prmlem2  17139  83prm  17142  139prm  17143  163prm  17144  317prm  17145  631prm  17146  1259lem4  17153  1259prm  17155  2503lem2  17157  2503lem3  17158  4001lem2  17161  quart1lem  26834  log2ublem3  26927  log2ub  26928  pntibndlem2  27571  1kp2ke3k  30393  ex-ind-dvds  30408  fib4  34365  2np3bcnp1  42104  2xp3dxp2ge1d  42201  ex-decpmul  42303  sn-0ne2  42399  3cubeslem3r  42661  rabren3dioph  42789  fmtno4nprmfac193  47519  139prmALT  47541  127prm  47544  nnsum4primesodd  47741  nnsum4primesoddALTV  47742  ackval1012  48569
  Copyright terms: Public domain W3C validator