MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p2e3 Structured version   Visualization version   GIF version

Theorem 1p2e3 12324
Description: 1 + 2 = 3. For a shorter proof using addcomli 11366, see 1p2e3ALT 12325. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 12-Dec-2022.)
Assertion
Ref Expression
1p2e3 (1 + 2) = 3

Proof of Theorem 1p2e3
StepHypRef Expression
1 df-2 12249 . . 3 2 = (1 + 1)
21oveq2i 7398 . 2 (1 + 2) = (1 + (1 + 1))
3 ax-1cn 11126 . . 3 1 ∈ ℂ
43, 3, 3addassi 11184 . 2 ((1 + 1) + 1) = (1 + (1 + 1))
5 1p1e2 12306 . . . 4 (1 + 1) = 2
65oveq1i 7397 . . 3 ((1 + 1) + 1) = (2 + 1)
7 2p1e3 12323 . . 3 (2 + 1) = 3
86, 7eqtri 2752 . 2 ((1 + 1) + 1) = 3
92, 4, 83eqtr2i 2758 1 (1 + 2) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7387  1c1 11069   + caddc 11071  2c2 12241  3c3 12242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-1cn 11126  ax-addass 11133
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-2 12249  df-3 12250
This theorem is referenced by:  fzo1to4tp  13715  binom3  14189  3lcm2e6woprm  16585  prmgaplem7  17028  2exp16  17061  prmlem1a  17077  23prm  17089  prmlem2  17090  83prm  17093  139prm  17094  163prm  17095  317prm  17096  631prm  17097  1259lem4  17104  1259prm  17106  2503lem2  17108  2503lem3  17109  4001lem2  17112  quart1lem  26765  log2ublem3  26858  log2ub  26859  pntibndlem2  27502  1kp2ke3k  30375  ex-ind-dvds  30390  cos9thpiminplylem2  33773  fib4  34395  2np3bcnp1  42132  1p3e4  42247  ex-decpmul  42294  sn-0ne2  42394  3cubeslem3r  42675  rabren3dioph  42803  modm2nep1  47367  fmtno4nprmfac193  47575  139prmALT  47597  127prm  47600  nnsum4primesodd  47797  nnsum4primesoddALTV  47798  pgnbgreunbgrlem2lem1  48104  ackval1012  48679
  Copyright terms: Public domain W3C validator