| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1p2e3 | Structured version Visualization version GIF version | ||
| Description: 1 + 2 = 3. For a shorter proof using addcomli 11425, see 1p2e3ALT 12382. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 12-Dec-2022.) |
| Ref | Expression |
|---|---|
| 1p2e3 | ⊢ (1 + 2) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12301 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7414 | . 2 ⊢ (1 + 2) = (1 + (1 + 1)) |
| 3 | ax-1cn 11185 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 3, 3, 3 | addassi 11243 | . 2 ⊢ ((1 + 1) + 1) = (1 + (1 + 1)) |
| 5 | 1p1e2 12363 | . . . 4 ⊢ (1 + 1) = 2 | |
| 6 | 5 | oveq1i 7413 | . . 3 ⊢ ((1 + 1) + 1) = (2 + 1) |
| 7 | 2p1e3 12380 | . . 3 ⊢ (2 + 1) = 3 | |
| 8 | 6, 7 | eqtri 2758 | . 2 ⊢ ((1 + 1) + 1) = 3 |
| 9 | 2, 4, 8 | 3eqtr2i 2764 | 1 ⊢ (1 + 2) = 3 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7403 1c1 11128 + caddc 11130 2c2 12293 3c3 12294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11185 ax-addass 11192 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-2 12301 df-3 12302 |
| This theorem is referenced by: fzo1to4tp 13768 binom3 14240 3lcm2e6woprm 16632 prmgaplem7 17075 2exp16 17108 prmlem1a 17124 23prm 17136 prmlem2 17137 83prm 17140 139prm 17141 163prm 17142 317prm 17143 631prm 17144 1259lem4 17151 1259prm 17153 2503lem2 17155 2503lem3 17156 4001lem2 17159 quart1lem 26815 log2ublem3 26908 log2ub 26909 pntibndlem2 27552 1kp2ke3k 30373 ex-ind-dvds 30388 cos9thpiminplylem2 33763 fib4 34382 2np3bcnp1 42103 2xp3dxp2ge1d 42200 ex-decpmul 42302 sn-0ne2 42396 3cubeslem3r 42657 rabren3dioph 42785 fmtno4nprmfac193 47536 139prmALT 47558 127prm 47561 nnsum4primesodd 47758 nnsum4primesoddALTV 47759 ackval1012 48618 |
| Copyright terms: Public domain | W3C validator |