| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1p2e3 | Structured version Visualization version GIF version | ||
| Description: 1 + 2 = 3. For a shorter proof using addcomli 11373, see 1p2e3ALT 12332. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 12-Dec-2022.) |
| Ref | Expression |
|---|---|
| 1p2e3 | ⊢ (1 + 2) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12256 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7401 | . 2 ⊢ (1 + 2) = (1 + (1 + 1)) |
| 3 | ax-1cn 11133 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 3, 3, 3 | addassi 11191 | . 2 ⊢ ((1 + 1) + 1) = (1 + (1 + 1)) |
| 5 | 1p1e2 12313 | . . . 4 ⊢ (1 + 1) = 2 | |
| 6 | 5 | oveq1i 7400 | . . 3 ⊢ ((1 + 1) + 1) = (2 + 1) |
| 7 | 2p1e3 12330 | . . 3 ⊢ (2 + 1) = 3 | |
| 8 | 6, 7 | eqtri 2753 | . 2 ⊢ ((1 + 1) + 1) = 3 |
| 9 | 2, 4, 8 | 3eqtr2i 2759 | 1 ⊢ (1 + 2) = 3 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 1c1 11076 + caddc 11078 2c2 12248 3c3 12249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11133 ax-addass 11140 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-2 12256 df-3 12257 |
| This theorem is referenced by: fzo1to4tp 13722 binom3 14196 3lcm2e6woprm 16592 prmgaplem7 17035 2exp16 17068 prmlem1a 17084 23prm 17096 prmlem2 17097 83prm 17100 139prm 17101 163prm 17102 317prm 17103 631prm 17104 1259lem4 17111 1259prm 17113 2503lem2 17115 2503lem3 17116 4001lem2 17119 quart1lem 26772 log2ublem3 26865 log2ub 26866 pntibndlem2 27509 1kp2ke3k 30382 ex-ind-dvds 30397 cos9thpiminplylem2 33780 fib4 34402 2np3bcnp1 42139 1p3e4 42254 ex-decpmul 42301 sn-0ne2 42401 3cubeslem3r 42682 rabren3dioph 42810 modm2nep1 47371 fmtno4nprmfac193 47579 139prmALT 47601 127prm 47604 nnsum4primesodd 47801 nnsum4primesoddALTV 47802 pgnbgreunbgrlem2lem1 48108 ackval1012 48683 |
| Copyright terms: Public domain | W3C validator |