| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1p2e3 | Structured version Visualization version GIF version | ||
| Description: 1 + 2 = 3. For a shorter proof using addcomli 11366, see 1p2e3ALT 12325. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 12-Dec-2022.) |
| Ref | Expression |
|---|---|
| 1p2e3 | ⊢ (1 + 2) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12249 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7398 | . 2 ⊢ (1 + 2) = (1 + (1 + 1)) |
| 3 | ax-1cn 11126 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 3, 3, 3 | addassi 11184 | . 2 ⊢ ((1 + 1) + 1) = (1 + (1 + 1)) |
| 5 | 1p1e2 12306 | . . . 4 ⊢ (1 + 1) = 2 | |
| 6 | 5 | oveq1i 7397 | . . 3 ⊢ ((1 + 1) + 1) = (2 + 1) |
| 7 | 2p1e3 12323 | . . 3 ⊢ (2 + 1) = 3 | |
| 8 | 6, 7 | eqtri 2752 | . 2 ⊢ ((1 + 1) + 1) = 3 |
| 9 | 2, 4, 8 | 3eqtr2i 2758 | 1 ⊢ (1 + 2) = 3 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 1c1 11069 + caddc 11071 2c2 12241 3c3 12242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-addass 11133 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 df-3 12250 |
| This theorem is referenced by: fzo1to4tp 13715 binom3 14189 3lcm2e6woprm 16585 prmgaplem7 17028 2exp16 17061 prmlem1a 17077 23prm 17089 prmlem2 17090 83prm 17093 139prm 17094 163prm 17095 317prm 17096 631prm 17097 1259lem4 17104 1259prm 17106 2503lem2 17108 2503lem3 17109 4001lem2 17112 quart1lem 26765 log2ublem3 26858 log2ub 26859 pntibndlem2 27502 1kp2ke3k 30375 ex-ind-dvds 30390 cos9thpiminplylem2 33773 fib4 34395 2np3bcnp1 42132 1p3e4 42247 ex-decpmul 42294 sn-0ne2 42394 3cubeslem3r 42675 rabren3dioph 42803 modm2nep1 47367 fmtno4nprmfac193 47575 139prmALT 47597 127prm 47600 nnsum4primesodd 47797 nnsum4primesoddALTV 47798 pgnbgreunbgrlem2lem1 48104 ackval1012 48679 |
| Copyright terms: Public domain | W3C validator |