MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p2e3 Structured version   Visualization version   GIF version

Theorem 1p2e3 12354
Description: 1 + 2 = 3. For a shorter proof using addcomli 11405, see 1p2e3ALT 12355. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 12-Dec-2022.)
Assertion
Ref Expression
1p2e3 (1 + 2) = 3

Proof of Theorem 1p2e3
StepHypRef Expression
1 df-2 12274 . . 3 2 = (1 + 1)
21oveq2i 7413 . 2 (1 + 2) = (1 + (1 + 1))
3 ax-1cn 11165 . . 3 1 ∈ ℂ
43, 3, 3addassi 11223 . 2 ((1 + 1) + 1) = (1 + (1 + 1))
5 1p1e2 12336 . . . 4 (1 + 1) = 2
65oveq1i 7412 . . 3 ((1 + 1) + 1) = (2 + 1)
7 2p1e3 12353 . . 3 (2 + 1) = 3
86, 7eqtri 2752 . 2 ((1 + 1) + 1) = 3
92, 4, 83eqtr2i 2758 1 (1 + 2) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  (class class class)co 7402  1c1 11108   + caddc 11110  2c2 12266  3c3 12267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-1cn 11165  ax-addass 11172
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-iota 6486  df-fv 6542  df-ov 7405  df-2 12274  df-3 12275
This theorem is referenced by:  fzo1to4tp  13721  binom3  14188  3lcm2e6woprm  16555  prmgaplem7  16995  2exp16  17029  prmlem1a  17045  23prm  17057  prmlem2  17058  83prm  17061  139prm  17062  163prm  17063  317prm  17064  631prm  17065  1259lem4  17072  1259prm  17074  2503lem2  17076  2503lem3  17077  4001lem2  17080  quart1lem  26727  log2ublem3  26820  log2ub  26821  pntibndlem2  27464  1kp2ke3k  30193  ex-ind-dvds  30208  fib4  33922  2np3bcnp1  41493  2xp3dxp2ge1d  41555  ex-decpmul  41736  sn-0ne2  41829  3cubeslem3r  41975  rabren3dioph  42103  fmtno4nprmfac193  46787  139prmALT  46809  127prm  46812  nnsum4primesodd  47009  nnsum4primesoddALTV  47010  ackval1012  47624
  Copyright terms: Public domain W3C validator