![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > readdridaddlidd | Structured version Visualization version GIF version |
Description: Given some real number 𝐵 where 𝐴 acts like a right additive identity, derive that 𝐴 is a left additive identity. Note that the hypothesis is weaker than proving that 𝐴 is a right additive identity (for all numbers). Although, if there is a right additive identity, then by readdcan 11410, 𝐴 is the right additive identity. (Contributed by Steven Nguyen, 14-Jan-2023.) |
Ref | Expression |
---|---|
readdridaddlidd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
readdridaddlidd.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
readdridaddlidd.1 | ⊢ (𝜑 → (𝐵 + 𝐴) = 𝐵) |
Ref | Expression |
---|---|
readdridaddlidd | ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | readdridaddlidd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ) |
3 | 2 | recnd 11264 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ) |
4 | readdridaddlidd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ) |
6 | 5 | recnd 11264 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ) |
7 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
8 | 7 | recnd 11264 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ) |
9 | 3, 6, 8 | addassd 11258 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + (𝐴 + 𝐶))) |
10 | readdridaddlidd.1 | . . . . 5 ⊢ (𝜑 → (𝐵 + 𝐴) = 𝐵) | |
11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐴) = 𝐵) |
12 | 11 | oveq1d 7429 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + 𝐶)) |
13 | 9, 12 | eqtr3d 2769 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶)) |
14 | 5, 7 | readdcld 11265 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ) |
15 | readdcan 11410 | . . 3 ⊢ (((𝐴 + 𝐶) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶)) | |
16 | 14, 7, 2, 15 | syl3anc 1369 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶)) |
17 | 13, 16 | mpbid 231 | 1 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 (class class class)co 7414 ℝcr 11129 + caddc 11133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11187 ax-addrcl 11191 ax-addass 11195 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-ltxr 11275 |
This theorem is referenced by: reneg0addlid 41851 |
Copyright terms: Public domain | W3C validator |