Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  readdridaddlidd Structured version   Visualization version   GIF version

Theorem readdridaddlidd 42290
Description: Given some real number 𝐵 where 𝐴 acts like a right additive identity, derive that 𝐴 is a left additive identity. Note that the hypothesis is weaker than proving that 𝐴 is a right additive identity (for all numbers). Although, if there is a right additive identity, then by readdcan 11284, 𝐴 is the right additive identity. (Contributed by Steven Nguyen, 14-Jan-2023.)
Hypotheses
Ref Expression
readdridaddlidd.a (𝜑𝐴 ∈ ℝ)
readdridaddlidd.b (𝜑𝐵 ∈ ℝ)
readdridaddlidd.1 (𝜑 → (𝐵 + 𝐴) = 𝐵)
Assertion
Ref Expression
readdridaddlidd ((𝜑𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶)

Proof of Theorem readdridaddlidd
StepHypRef Expression
1 readdridaddlidd.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
21adantr 480 . . . . 5 ((𝜑𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
32recnd 11137 . . . 4 ((𝜑𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
4 readdridaddlidd.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
54adantr 480 . . . . 5 ((𝜑𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
65recnd 11137 . . . 4 ((𝜑𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
7 simpr 484 . . . . 5 ((𝜑𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
87recnd 11137 . . . 4 ((𝜑𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
93, 6, 8addassd 11131 . . 3 ((𝜑𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + (𝐴 + 𝐶)))
10 readdridaddlidd.1 . . . . 5 (𝜑 → (𝐵 + 𝐴) = 𝐵)
1110adantr 480 . . . 4 ((𝜑𝐶 ∈ ℝ) → (𝐵 + 𝐴) = 𝐵)
1211oveq1d 7361 . . 3 ((𝜑𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + 𝐶))
139, 12eqtr3d 2768 . 2 ((𝜑𝐶 ∈ ℝ) → (𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶))
145, 7readdcld 11138 . . 3 ((𝜑𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
15 readdcan 11284 . . 3 (((𝐴 + 𝐶) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶))
1614, 7, 2, 15syl3anc 1373 . 2 ((𝜑𝐶 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶))
1713, 16mpbid 232 1 ((𝜑𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  (class class class)co 7346  cr 11002   + caddc 11006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-addrcl 11064  ax-addass 11068  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-ltxr 11148
This theorem is referenced by:  reneg0addlid  42406
  Copyright terms: Public domain W3C validator