Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  readdridaddlidd Structured version   Visualization version   GIF version

Theorem readdridaddlidd 42253
Description: Given some real number 𝐵 where 𝐴 acts like a right additive identity, derive that 𝐴 is a left additive identity. Note that the hypothesis is weaker than proving that 𝐴 is a right additive identity (for all numbers). Although, if there is a right additive identity, then by readdcan 11464, 𝐴 is the right additive identity. (Contributed by Steven Nguyen, 14-Jan-2023.)
Hypotheses
Ref Expression
readdridaddlidd.a (𝜑𝐴 ∈ ℝ)
readdridaddlidd.b (𝜑𝐵 ∈ ℝ)
readdridaddlidd.1 (𝜑 → (𝐵 + 𝐴) = 𝐵)
Assertion
Ref Expression
readdridaddlidd ((𝜑𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶)

Proof of Theorem readdridaddlidd
StepHypRef Expression
1 readdridaddlidd.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
21adantr 480 . . . . 5 ((𝜑𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
32recnd 11318 . . . 4 ((𝜑𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
4 readdridaddlidd.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
54adantr 480 . . . . 5 ((𝜑𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
65recnd 11318 . . . 4 ((𝜑𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
7 simpr 484 . . . . 5 ((𝜑𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
87recnd 11318 . . . 4 ((𝜑𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
93, 6, 8addassd 11312 . . 3 ((𝜑𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + (𝐴 + 𝐶)))
10 readdridaddlidd.1 . . . . 5 (𝜑 → (𝐵 + 𝐴) = 𝐵)
1110adantr 480 . . . 4 ((𝜑𝐶 ∈ ℝ) → (𝐵 + 𝐴) = 𝐵)
1211oveq1d 7463 . . 3 ((𝜑𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + 𝐶))
139, 12eqtr3d 2782 . 2 ((𝜑𝐶 ∈ ℝ) → (𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶))
145, 7readdcld 11319 . . 3 ((𝜑𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
15 readdcan 11464 . . 3 (((𝐴 + 𝐶) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶))
1614, 7, 2, 15syl3anc 1371 . 2 ((𝜑𝐶 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶))
1713, 16mpbid 232 1 ((𝜑𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  (class class class)co 7448  cr 11183   + caddc 11187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-addrcl 11245  ax-addass 11249  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329
This theorem is referenced by:  reneg0addlid  42350
  Copyright terms: Public domain W3C validator