![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > readdridaddlidd | Structured version Visualization version GIF version |
Description: Given some real number 𝐵 where 𝐴 acts like a right additive identity, derive that 𝐴 is a left additive identity. Note that the hypothesis is weaker than proving that 𝐴 is a right additive identity (for all numbers). Although, if there is a right additive identity, then by readdcan 11433, 𝐴 is the right additive identity. (Contributed by Steven Nguyen, 14-Jan-2023.) |
Ref | Expression |
---|---|
readdridaddlidd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
readdridaddlidd.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
readdridaddlidd.1 | ⊢ (𝜑 → (𝐵 + 𝐴) = 𝐵) |
Ref | Expression |
---|---|
readdridaddlidd | ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | readdridaddlidd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ) |
3 | 2 | recnd 11287 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ) |
4 | readdridaddlidd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ) |
6 | 5 | recnd 11287 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ) |
7 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
8 | 7 | recnd 11287 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ) |
9 | 3, 6, 8 | addassd 11281 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + (𝐴 + 𝐶))) |
10 | readdridaddlidd.1 | . . . . 5 ⊢ (𝜑 → (𝐵 + 𝐴) = 𝐵) | |
11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐴) = 𝐵) |
12 | 11 | oveq1d 7446 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + 𝐶)) |
13 | 9, 12 | eqtr3d 2777 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶)) |
14 | 5, 7 | readdcld 11288 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ) |
15 | readdcan 11433 | . . 3 ⊢ (((𝐴 + 𝐶) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶)) | |
16 | 14, 7, 2, 15 | syl3anc 1370 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶)) |
17 | 13, 16 | mpbid 232 | 1 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℝcr 11152 + caddc 11156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-addrcl 11214 ax-addass 11218 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 |
This theorem is referenced by: reneg0addlid 42381 |
Copyright terms: Public domain | W3C validator |