![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > readdridaddlidd | Structured version Visualization version GIF version |
Description: Given some real number 𝐵 where 𝐴 acts like a right additive identity, derive that 𝐴 is a left additive identity. Note that the hypothesis is weaker than proving that 𝐴 is a right additive identity (for all numbers). Although, if there is a right additive identity, then by readdcan 11393, 𝐴 is the right additive identity. (Contributed by Steven Nguyen, 14-Jan-2023.) |
Ref | Expression |
---|---|
readdridaddlidd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
readdridaddlidd.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
readdridaddlidd.1 | ⊢ (𝜑 → (𝐵 + 𝐴) = 𝐵) |
Ref | Expression |
---|---|
readdridaddlidd | ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | readdridaddlidd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ) |
3 | 2 | recnd 11247 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ) |
4 | readdridaddlidd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ) |
6 | 5 | recnd 11247 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ) |
7 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
8 | 7 | recnd 11247 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ) |
9 | 3, 6, 8 | addassd 11241 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + (𝐴 + 𝐶))) |
10 | readdridaddlidd.1 | . . . . 5 ⊢ (𝜑 → (𝐵 + 𝐴) = 𝐵) | |
11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐴) = 𝐵) |
12 | 11 | oveq1d 7427 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + 𝐶)) |
13 | 9, 12 | eqtr3d 2773 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶)) |
14 | 5, 7 | readdcld 11248 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ) |
15 | readdcan 11393 | . . 3 ⊢ (((𝐴 + 𝐶) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶)) | |
16 | 14, 7, 2, 15 | syl3anc 1370 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶)) |
17 | 13, 16 | mpbid 231 | 1 ⊢ ((𝜑 ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 (class class class)co 7412 ℝcr 11113 + caddc 11117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11171 ax-addrcl 11175 ax-addass 11179 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-ltxr 11258 |
This theorem is referenced by: reneg0addlid 41550 |
Copyright terms: Public domain | W3C validator |