Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  readdridaddlidd Structured version   Visualization version   GIF version

Theorem readdridaddlidd 42246
Description: Given some real number 𝐵 where 𝐴 acts like a right additive identity, derive that 𝐴 is a left additive identity. Note that the hypothesis is weaker than proving that 𝐴 is a right additive identity (for all numbers). Although, if there is a right additive identity, then by readdcan 11348, 𝐴 is the right additive identity. (Contributed by Steven Nguyen, 14-Jan-2023.)
Hypotheses
Ref Expression
readdridaddlidd.a (𝜑𝐴 ∈ ℝ)
readdridaddlidd.b (𝜑𝐵 ∈ ℝ)
readdridaddlidd.1 (𝜑 → (𝐵 + 𝐴) = 𝐵)
Assertion
Ref Expression
readdridaddlidd ((𝜑𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶)

Proof of Theorem readdridaddlidd
StepHypRef Expression
1 readdridaddlidd.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
21adantr 480 . . . . 5 ((𝜑𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
32recnd 11202 . . . 4 ((𝜑𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
4 readdridaddlidd.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
54adantr 480 . . . . 5 ((𝜑𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
65recnd 11202 . . . 4 ((𝜑𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
7 simpr 484 . . . . 5 ((𝜑𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
87recnd 11202 . . . 4 ((𝜑𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
93, 6, 8addassd 11196 . . 3 ((𝜑𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + (𝐴 + 𝐶)))
10 readdridaddlidd.1 . . . . 5 (𝜑 → (𝐵 + 𝐴) = 𝐵)
1110adantr 480 . . . 4 ((𝜑𝐶 ∈ ℝ) → (𝐵 + 𝐴) = 𝐵)
1211oveq1d 7402 . . 3 ((𝜑𝐶 ∈ ℝ) → ((𝐵 + 𝐴) + 𝐶) = (𝐵 + 𝐶))
139, 12eqtr3d 2766 . 2 ((𝜑𝐶 ∈ ℝ) → (𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶))
145, 7readdcld 11203 . . 3 ((𝜑𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
15 readdcan 11348 . . 3 (((𝐴 + 𝐶) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶))
1614, 7, 2, 15syl3anc 1373 . 2 ((𝜑𝐶 ∈ ℝ) → ((𝐵 + (𝐴 + 𝐶)) = (𝐵 + 𝐶) ↔ (𝐴 + 𝐶) = 𝐶))
1713, 16mpbid 232 1 ((𝜑𝐶 ∈ ℝ) → (𝐴 + 𝐶) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  (class class class)co 7387  cr 11067   + caddc 11071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-addrcl 11129  ax-addass 11133  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213
This theorem is referenced by:  reneg0addlid  42362
  Copyright terms: Public domain W3C validator