| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addassi | Structured version Visualization version GIF version | ||
| Description: Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| addassi | ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | addass 11224 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1462 | 1 ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 (class class class)co 7413 ℂcc 11135 + caddc 11140 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addass 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mul02lem2 11420 addrid 11423 2p2e4 12383 1p2e3 12391 3p2e5 12399 3p3e6 12400 4p2e6 12401 4p3e7 12402 4p4e8 12403 5p2e7 12404 5p3e8 12405 5p4e9 12406 6p2e8 12407 6p3e9 12408 7p2e9 12409 numsuc 12730 nummac 12761 numaddc 12764 6p5lem 12786 5p5e10 12787 6p4e10 12788 7p3e10 12791 8p2e10 12796 binom2i 14233 faclbnd4lem1 14314 3dvdsdec 16351 3dvds2dec 16352 gcdaddmlem 16543 mod2xnegi 17091 decsplit 17102 lgsdir2lem2 27306 2lgsoddprmlem3d 27393 ax5seglem7 28880 normlem3 31059 stadd3i 32195 dfdec100 32772 dp3mul10 32820 dpmul 32835 dpmul4 32836 quad3 35634 addassnni 41944 sn-1ne2 42263 sqmid3api 42281 re1m1e0m0 42390 sn-0tie0 42432 fltnltalem 42635 unitadd 44170 sqwvfoura 46200 sqwvfourb 46201 fouriersw 46203 3exp4mod41 47561 bgoldbtbndlem1 47750 |
| Copyright terms: Public domain | W3C validator |