| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addassi | Structured version Visualization version GIF version | ||
| Description: Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| addassi | ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | addass 11131 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 + caddc 11047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addass 11109 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mul02lem2 11327 addrid 11330 2p2e4 12292 1p2e3 12300 3p2e5 12308 3p3e6 12309 4p2e6 12310 4p3e7 12311 4p4e8 12312 5p2e7 12313 5p3e8 12314 5p4e9 12315 6p2e8 12316 6p3e9 12317 7p2e9 12318 numsuc 12639 nummac 12670 numaddc 12673 6p5lem 12695 5p5e10 12696 6p4e10 12697 7p3e10 12700 8p2e10 12705 binom2i 14153 faclbnd4lem1 14234 3dvdsdec 16278 3dvds2dec 16279 gcdaddmlem 16470 mod2xnegi 17018 decsplit 17029 lgsdir2lem2 27270 2lgsoddprmlem3d 27357 ax5seglem7 28915 normlem3 31091 stadd3i 32227 dfdec100 32805 dp3mul10 32868 dpmul 32883 dpmul4 32884 cos9thpiminplylem4 33768 quad3 35650 addassnni 41965 1p3e4 42240 sn-1ne2 42246 sqmid3api 42264 re1m1e0m0 42378 sn-0tie0 42432 fltnltalem 42643 unitadd 44177 sqwvfoura 46219 sqwvfourb 46220 fouriersw 46222 3exp4mod41 47610 bgoldbtbndlem1 47799 |
| Copyright terms: Public domain | W3C validator |