Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addassi | Structured version Visualization version GIF version |
Description: Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
addassi | ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | addass 10889 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1459 | 1 ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 + caddc 10805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addass 10867 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: mul02lem2 11082 addid1 11085 2p2e4 12038 1p2e3 12046 3p2e5 12054 3p3e6 12055 4p2e6 12056 4p3e7 12057 4p4e8 12058 5p2e7 12059 5p3e8 12060 5p4e9 12061 6p2e8 12062 6p3e9 12063 7p2e9 12064 numsuc 12380 nummac 12411 numaddc 12414 6p5lem 12436 5p5e10 12437 6p4e10 12438 7p3e10 12441 8p2e10 12446 binom2i 13856 faclbnd4lem1 13935 3dvdsdec 15969 3dvds2dec 15970 gcdaddmlem 16159 mod2xnegi 16700 decexp2 16704 decsplit 16712 lgsdir2lem2 26379 2lgsoddprmlem3d 26466 ax5seglem7 27206 normlem3 29375 stadd3i 30511 dfdec100 31046 dp3mul10 31074 dpmul 31089 dpmul4 31090 quad3 33528 addassnni 39921 sn-1ne2 40216 sqmid3api 40232 re1m1e0m0 40301 sn-0tie0 40342 fltnltalem 40415 unitadd 41695 sqwvfoura 43659 sqwvfourb 43660 fouriersw 43662 3exp4mod41 44956 bgoldbtbndlem1 45145 |
Copyright terms: Public domain | W3C validator |