![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addassi | Structured version Visualization version GIF version |
Description: Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
addassi | ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | addass 11249 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1462 | 1 ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7438 ℂcc 11160 + caddc 11165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addass 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: mul02lem2 11445 addrid 11448 2p2e4 12408 1p2e3 12416 3p2e5 12424 3p3e6 12425 4p2e6 12426 4p3e7 12427 4p4e8 12428 5p2e7 12429 5p3e8 12430 5p4e9 12431 6p2e8 12432 6p3e9 12433 7p2e9 12434 numsuc 12754 nummac 12785 numaddc 12788 6p5lem 12810 5p5e10 12811 6p4e10 12812 7p3e10 12815 8p2e10 12820 binom2i 14257 faclbnd4lem1 14338 3dvdsdec 16375 3dvds2dec 16376 gcdaddmlem 16567 mod2xnegi 17114 decexp2 17118 decsplit 17126 lgsdir2lem2 27396 2lgsoddprmlem3d 27483 ax5seglem7 28976 normlem3 31157 stadd3i 32293 dfdec100 32851 dp3mul10 32897 dpmul 32912 dpmul4 32913 quad3 35668 addassnni 41980 sn-1ne2 42293 sqmid3api 42311 re1m1e0m0 42420 sn-0tie0 42462 fltnltalem 42665 unitadd 44201 sqwvfoura 46212 sqwvfourb 46213 fouriersw 46215 3exp4mod41 47569 bgoldbtbndlem1 47758 |
Copyright terms: Public domain | W3C validator |