| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addassi | Structured version Visualization version GIF version | ||
| Description: Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| addassi | ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | addass 11161 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7389 ℂcc 11072 + caddc 11077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addass 11139 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mul02lem2 11357 addrid 11360 2p2e4 12322 1p2e3 12330 3p2e5 12338 3p3e6 12339 4p2e6 12340 4p3e7 12341 4p4e8 12342 5p2e7 12343 5p3e8 12344 5p4e9 12345 6p2e8 12346 6p3e9 12347 7p2e9 12348 numsuc 12669 nummac 12700 numaddc 12703 6p5lem 12725 5p5e10 12726 6p4e10 12727 7p3e10 12730 8p2e10 12735 binom2i 14183 faclbnd4lem1 14264 3dvdsdec 16308 3dvds2dec 16309 gcdaddmlem 16500 mod2xnegi 17048 decsplit 17059 lgsdir2lem2 27243 2lgsoddprmlem3d 27330 ax5seglem7 28868 normlem3 31047 stadd3i 32183 dfdec100 32761 dp3mul10 32824 dpmul 32839 dpmul4 32840 cos9thpiminplylem4 33781 quad3 35657 addassnni 41967 1p3e4 42242 sn-1ne2 42248 sqmid3api 42266 re1m1e0m0 42380 sn-0tie0 42434 fltnltalem 42643 unitadd 44177 sqwvfoura 46219 sqwvfourb 46220 fouriersw 46222 3exp4mod41 47607 bgoldbtbndlem1 47796 |
| Copyright terms: Public domain | W3C validator |