| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addassi | Structured version Visualization version GIF version | ||
| Description: Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| addassi | ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | addass 11093 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 + caddc 11009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addass 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mul02lem2 11290 addrid 11293 2p2e4 12255 1p2e3 12263 3p2e5 12271 3p3e6 12272 4p2e6 12273 4p3e7 12274 4p4e8 12275 5p2e7 12276 5p3e8 12277 5p4e9 12278 6p2e8 12279 6p3e9 12280 7p2e9 12281 numsuc 12602 nummac 12633 numaddc 12636 6p5lem 12658 5p5e10 12659 6p4e10 12660 7p3e10 12663 8p2e10 12668 binom2i 14119 faclbnd4lem1 14200 3dvdsdec 16243 3dvds2dec 16244 gcdaddmlem 16435 mod2xnegi 16983 decsplit 16994 lgsdir2lem2 27264 2lgsoddprmlem3d 27351 ax5seglem7 28913 normlem3 31092 stadd3i 32228 dfdec100 32813 dp3mul10 32878 dpmul 32893 dpmul4 32894 cos9thpiminplylem4 33798 quad3 35714 addassnni 42087 1p3e4 42362 sn-1ne2 42368 sqmid3api 42386 re1m1e0m0 42500 sn-0tie0 42554 fltnltalem 42765 unitadd 44298 sqwvfoura 46336 sqwvfourb 46337 fouriersw 46339 3exp4mod41 47726 bgoldbtbndlem1 47915 |
| Copyright terms: Public domain | W3C validator |