| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addassi | Structured version Visualization version GIF version | ||
| Description: Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| axi.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| addassi | ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | addass 11096 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7349 ℂcc 11007 + caddc 11012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addass 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: mul02lem2 11293 addrid 11296 2p2e4 12258 1p2e3 12266 3p2e5 12274 3p3e6 12275 4p2e6 12276 4p3e7 12277 4p4e8 12278 5p2e7 12279 5p3e8 12280 5p4e9 12281 6p2e8 12282 6p3e9 12283 7p2e9 12284 numsuc 12605 nummac 12636 numaddc 12639 6p5lem 12661 5p5e10 12662 6p4e10 12663 7p3e10 12666 8p2e10 12671 binom2i 14119 faclbnd4lem1 14200 3dvdsdec 16243 3dvds2dec 16244 gcdaddmlem 16435 mod2xnegi 16983 decsplit 16994 lgsdir2lem2 27235 2lgsoddprmlem3d 27322 ax5seglem7 28880 normlem3 31056 stadd3i 32192 dfdec100 32776 dp3mul10 32839 dpmul 32854 dpmul4 32855 cos9thpiminplylem4 33758 quad3 35653 addassnni 41967 1p3e4 42242 sn-1ne2 42248 sqmid3api 42266 re1m1e0m0 42380 sn-0tie0 42434 fltnltalem 42645 unitadd 44178 sqwvfoura 46219 sqwvfourb 46220 fouriersw 46222 3exp4mod41 47610 bgoldbtbndlem1 47799 |
| Copyright terms: Public domain | W3C validator |