Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addassi | Structured version Visualization version GIF version |
Description: Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
addassi | ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | addass 10958 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1460 | 1 ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 + caddc 10874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addass 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: mul02lem2 11152 addid1 11155 2p2e4 12108 1p2e3 12116 3p2e5 12124 3p3e6 12125 4p2e6 12126 4p3e7 12127 4p4e8 12128 5p2e7 12129 5p3e8 12130 5p4e9 12131 6p2e8 12132 6p3e9 12133 7p2e9 12134 numsuc 12451 nummac 12482 numaddc 12485 6p5lem 12507 5p5e10 12508 6p4e10 12509 7p3e10 12512 8p2e10 12517 binom2i 13928 faclbnd4lem1 14007 3dvdsdec 16041 3dvds2dec 16042 gcdaddmlem 16231 mod2xnegi 16772 decexp2 16776 decsplit 16784 lgsdir2lem2 26474 2lgsoddprmlem3d 26561 ax5seglem7 27303 normlem3 29474 stadd3i 30610 dfdec100 31144 dp3mul10 31172 dpmul 31187 dpmul4 31188 quad3 33628 addassnni 39993 sn-1ne2 40295 sqmid3api 40311 re1m1e0m0 40380 sn-0tie0 40421 fltnltalem 40499 unitadd 41806 sqwvfoura 43769 sqwvfourb 43770 fouriersw 43772 3exp4mod41 45068 bgoldbtbndlem1 45257 |
Copyright terms: Public domain | W3C validator |