| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2arwcatlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for 2arwcat 49711. (Contributed by Zhi Wang, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| 2arwcatlem5.1 | ⊢ (𝜑 → ( 1 · 0 ) = 0 ) |
| 2arwcatlem5.2 | ⊢ (𝜑 → ( 0 · 1 ) = 0 ) |
| 2arwcatlem5.3 | ⊢ (𝜑 → ( 0 · 0 ) ∈ { 0 , 1 }) |
| Ref | Expression |
|---|---|
| 2arwcatlem5 | ⊢ (𝜑 → (( 0 · 0 ) · 0 ) = ( 0 · ( 0 · 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ( 0 · 0 ) = 0 ) → ( 0 · 0 ) = 0 ) | |
| 2 | 1 | oveq1d 7361 | . . 3 ⊢ ((𝜑 ∧ ( 0 · 0 ) = 0 ) → (( 0 · 0 ) · 0 ) = ( 0 · 0 )) |
| 3 | 1 | oveq2d 7362 | . . 3 ⊢ ((𝜑 ∧ ( 0 · 0 ) = 0 ) → ( 0 · ( 0 · 0 )) = ( 0 · 0 )) |
| 4 | 2, 3 | eqtr4d 2769 | . 2 ⊢ ((𝜑 ∧ ( 0 · 0 ) = 0 ) → (( 0 · 0 ) · 0 ) = ( 0 · ( 0 · 0 ))) |
| 5 | 2arwcatlem5.1 | . . . . 5 ⊢ (𝜑 → ( 1 · 0 ) = 0 ) | |
| 6 | 2arwcatlem5.2 | . . . . 5 ⊢ (𝜑 → ( 0 · 1 ) = 0 ) | |
| 7 | 5, 6 | eqtr4d 2769 | . . . 4 ⊢ (𝜑 → ( 1 · 0 ) = ( 0 · 1 )) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ( 0 · 0 ) = 1 ) → ( 1 · 0 ) = ( 0 · 1 )) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ( 0 · 0 ) = 1 ) → ( 0 · 0 ) = 1 ) | |
| 10 | 9 | oveq1d 7361 | . . 3 ⊢ ((𝜑 ∧ ( 0 · 0 ) = 1 ) → (( 0 · 0 ) · 0 ) = ( 1 · 0 )) |
| 11 | 9 | oveq2d 7362 | . . 3 ⊢ ((𝜑 ∧ ( 0 · 0 ) = 1 ) → ( 0 · ( 0 · 0 )) = ( 0 · 1 )) |
| 12 | 8, 10, 11 | 3eqtr4d 2776 | . 2 ⊢ ((𝜑 ∧ ( 0 · 0 ) = 1 ) → (( 0 · 0 ) · 0 ) = ( 0 · ( 0 · 0 ))) |
| 13 | 2arwcatlem5.3 | . . 3 ⊢ (𝜑 → ( 0 · 0 ) ∈ { 0 , 1 }) | |
| 14 | ovex 7379 | . . . 4 ⊢ ( 0 · 0 ) ∈ V | |
| 15 | 14 | elpr 4598 | . . 3 ⊢ (( 0 · 0 ) ∈ { 0 , 1 } ↔ (( 0 · 0 ) = 0 ∨ ( 0 · 0 ) = 1 )) |
| 16 | 13, 15 | sylib 218 | . 2 ⊢ (𝜑 → (( 0 · 0 ) = 0 ∨ ( 0 · 0 ) = 1 )) |
| 17 | 4, 12, 16 | mpjaodan 960 | 1 ⊢ (𝜑 → (( 0 · 0 ) · 0 ) = ( 0 · ( 0 · 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 {cpr 4575 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: 2arwcat 49711 |
| Copyright terms: Public domain | W3C validator |