Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arwcatlem5 Structured version   Visualization version   GIF version

Theorem 2arwcatlem5 49578
Description: Lemma for 2arwcat 49579. (Contributed by Zhi Wang, 5-Nov-2025.)
Hypotheses
Ref Expression
2arwcatlem5.1 (𝜑 → ( 1 · 0 ) = 0 )
2arwcatlem5.2 (𝜑 → ( 0 · 1 ) = 0 )
2arwcatlem5.3 (𝜑 → ( 0 · 0 ) ∈ { 0 , 1 })
Assertion
Ref Expression
2arwcatlem5 (𝜑 → (( 0 · 0 ) · 0 ) = ( 0 · ( 0 · 0 )))

Proof of Theorem 2arwcatlem5
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑 ∧ ( 0 · 0 ) = 0 ) → ( 0 · 0 ) = 0 )
21oveq1d 7404 . . 3 ((𝜑 ∧ ( 0 · 0 ) = 0 ) → (( 0 · 0 ) · 0 ) = ( 0 · 0 ))
31oveq2d 7405 . . 3 ((𝜑 ∧ ( 0 · 0 ) = 0 ) → ( 0 · ( 0 · 0 )) = ( 0 · 0 ))
42, 3eqtr4d 2768 . 2 ((𝜑 ∧ ( 0 · 0 ) = 0 ) → (( 0 · 0 ) · 0 ) = ( 0 · ( 0 · 0 )))
5 2arwcatlem5.1 . . . . 5 (𝜑 → ( 1 · 0 ) = 0 )
6 2arwcatlem5.2 . . . . 5 (𝜑 → ( 0 · 1 ) = 0 )
75, 6eqtr4d 2768 . . . 4 (𝜑 → ( 1 · 0 ) = ( 0 · 1 ))
87adantr 480 . . 3 ((𝜑 ∧ ( 0 · 0 ) = 1 ) → ( 1 · 0 ) = ( 0 · 1 ))
9 simpr 484 . . . 4 ((𝜑 ∧ ( 0 · 0 ) = 1 ) → ( 0 · 0 ) = 1 )
109oveq1d 7404 . . 3 ((𝜑 ∧ ( 0 · 0 ) = 1 ) → (( 0 · 0 ) · 0 ) = ( 1 · 0 ))
119oveq2d 7405 . . 3 ((𝜑 ∧ ( 0 · 0 ) = 1 ) → ( 0 · ( 0 · 0 )) = ( 0 · 1 ))
128, 10, 113eqtr4d 2775 . 2 ((𝜑 ∧ ( 0 · 0 ) = 1 ) → (( 0 · 0 ) · 0 ) = ( 0 · ( 0 · 0 )))
13 2arwcatlem5.3 . . 3 (𝜑 → ( 0 · 0 ) ∈ { 0 , 1 })
14 ovex 7422 . . . 4 ( 0 · 0 ) ∈ V
1514elpr 4616 . . 3 (( 0 · 0 ) ∈ { 0 , 1 } ↔ (( 0 · 0 ) = 0 ∨ ( 0 · 0 ) = 1 ))
1613, 15sylib 218 . 2 (𝜑 → (( 0 · 0 ) = 0 ∨ ( 0 · 0 ) = 1 ))
174, 12, 16mpjaodan 960 1 (𝜑 → (( 0 · 0 ) · 0 ) = ( 0 · ( 0 · 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  {cpr 4593  (class class class)co 7389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-ov 7392
This theorem is referenced by:  2arwcat  49579
  Copyright terms: Public domain W3C validator