| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2arwcatlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for 2arwcat 49582. (Contributed by Zhi Wang, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| 2arwcatlem5.1 | ⊢ (𝜑 → ( 1 · 0 ) = 0 ) |
| 2arwcatlem5.2 | ⊢ (𝜑 → ( 0 · 1 ) = 0 ) |
| 2arwcatlem5.3 | ⊢ (𝜑 → ( 0 · 0 ) ∈ { 0 , 1 }) |
| Ref | Expression |
|---|---|
| 2arwcatlem5 | ⊢ (𝜑 → (( 0 · 0 ) · 0 ) = ( 0 · ( 0 · 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ( 0 · 0 ) = 0 ) → ( 0 · 0 ) = 0 ) | |
| 2 | 1 | oveq1d 7384 | . . 3 ⊢ ((𝜑 ∧ ( 0 · 0 ) = 0 ) → (( 0 · 0 ) · 0 ) = ( 0 · 0 )) |
| 3 | 1 | oveq2d 7385 | . . 3 ⊢ ((𝜑 ∧ ( 0 · 0 ) = 0 ) → ( 0 · ( 0 · 0 )) = ( 0 · 0 )) |
| 4 | 2, 3 | eqtr4d 2767 | . 2 ⊢ ((𝜑 ∧ ( 0 · 0 ) = 0 ) → (( 0 · 0 ) · 0 ) = ( 0 · ( 0 · 0 ))) |
| 5 | 2arwcatlem5.1 | . . . . 5 ⊢ (𝜑 → ( 1 · 0 ) = 0 ) | |
| 6 | 2arwcatlem5.2 | . . . . 5 ⊢ (𝜑 → ( 0 · 1 ) = 0 ) | |
| 7 | 5, 6 | eqtr4d 2767 | . . . 4 ⊢ (𝜑 → ( 1 · 0 ) = ( 0 · 1 )) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ( 0 · 0 ) = 1 ) → ( 1 · 0 ) = ( 0 · 1 )) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ ( 0 · 0 ) = 1 ) → ( 0 · 0 ) = 1 ) | |
| 10 | 9 | oveq1d 7384 | . . 3 ⊢ ((𝜑 ∧ ( 0 · 0 ) = 1 ) → (( 0 · 0 ) · 0 ) = ( 1 · 0 )) |
| 11 | 9 | oveq2d 7385 | . . 3 ⊢ ((𝜑 ∧ ( 0 · 0 ) = 1 ) → ( 0 · ( 0 · 0 )) = ( 0 · 1 )) |
| 12 | 8, 10, 11 | 3eqtr4d 2774 | . 2 ⊢ ((𝜑 ∧ ( 0 · 0 ) = 1 ) → (( 0 · 0 ) · 0 ) = ( 0 · ( 0 · 0 ))) |
| 13 | 2arwcatlem5.3 | . . 3 ⊢ (𝜑 → ( 0 · 0 ) ∈ { 0 , 1 }) | |
| 14 | ovex 7402 | . . . 4 ⊢ ( 0 · 0 ) ∈ V | |
| 15 | 14 | elpr 4610 | . . 3 ⊢ (( 0 · 0 ) ∈ { 0 , 1 } ↔ (( 0 · 0 ) = 0 ∨ ( 0 · 0 ) = 1 )) |
| 16 | 13, 15 | sylib 218 | . 2 ⊢ (𝜑 → (( 0 · 0 ) = 0 ∨ ( 0 · 0 ) = 1 )) |
| 17 | 4, 12, 16 | mpjaodan 960 | 1 ⊢ (𝜑 → (( 0 · 0 ) · 0 ) = ( 0 · ( 0 · 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {cpr 4587 (class class class)co 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: 2arwcat 49582 |
| Copyright terms: Public domain | W3C validator |