MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2mulicn Structured version   Visualization version   GIF version

Theorem 2mulicn 12435
Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn (2 · i) ∈ ℂ

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 12287 . 2 2 ∈ ℂ
2 ax-icn 11169 . 2 i ∈ ℂ
31, 2mulcli 11221 1 (2 · i) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  (class class class)co 7409  cc 11108  ici 11112   · cmul 11115  2c2 12267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-mulcl 11172
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-cleq 2725  df-clel 2811  df-2 12275
This theorem is referenced by:  imval2  15098  sinf  16067  sinneg  16089  efival  16095  sinadd  16107  dvmptim  25487  sincn  25956  sineq0  26033  sinasin  26394  efiatan2  26422  2efiatan  26423  tanatan  26424  sineq0ALT  43698
  Copyright terms: Public domain W3C validator