![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2mulicn | Structured version Visualization version GIF version |
Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
2mulicn | ⊢ (2 · i) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12294 | . 2 ⊢ 2 ∈ ℂ | |
2 | ax-icn 11175 | . 2 ⊢ i ∈ ℂ | |
3 | 1, 2 | mulcli 11228 | 1 ⊢ (2 · i) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7412 ℂcc 11114 ici 11118 · cmul 11121 2c2 12274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-mulcl 11178 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2809 df-2 12282 |
This theorem is referenced by: imval2 15105 sinf 16074 sinneg 16096 efival 16102 sinadd 16114 dvmptim 25821 sincn 26295 sineq0 26372 sinasin 26734 efiatan2 26762 2efiatan 26763 tanatan 26764 sineq0ALT 44160 |
Copyright terms: Public domain | W3C validator |