MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2mulicn Structured version   Visualization version   GIF version

Theorem 2mulicn 12406
Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn (2 · i) ∈ ℂ

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 12261 . 2 2 ∈ ℂ
2 ax-icn 11127 . 2 i ∈ ℂ
31, 2mulcli 11181 1 (2 · i) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  (class class class)co 7387  cc 11066  ici 11070   · cmul 11073  2c2 12241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-mulcl 11130
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-clel 2803  df-2 12249
This theorem is referenced by:  imval2  15117  sinf  16092  sinneg  16114  efival  16120  sinadd  16132  dvmptim  25874  sincn  26354  sineq0  26433  sinasin  26799  efiatan2  26827  2efiatan  26828  tanatan  26829  sineq0ALT  44926
  Copyright terms: Public domain W3C validator