![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2mulicn | Structured version Visualization version GIF version |
Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
2mulicn | ⊢ (2 · i) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12368 | . 2 ⊢ 2 ∈ ℂ | |
2 | ax-icn 11243 | . 2 ⊢ i ∈ ℂ | |
3 | 1, 2 | mulcli 11297 | 1 ⊢ (2 · i) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 ici 11186 · cmul 11189 2c2 12348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-2 12356 |
This theorem is referenced by: imval2 15200 sinf 16172 sinneg 16194 efival 16200 sinadd 16212 dvmptim 26028 sincn 26506 sineq0 26584 sinasin 26950 efiatan2 26978 2efiatan 26979 tanatan 26980 sineq0ALT 44908 |
Copyright terms: Public domain | W3C validator |