MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2mulicn Structured version   Visualization version   GIF version

Theorem 2mulicn 12345
Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn (2 · i) ∈ ℂ

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 12200 . 2 2 ∈ ℂ
2 ax-icn 11065 . 2 i ∈ ℂ
31, 2mulcli 11119 1 (2 · i) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  (class class class)co 7346  cc 11004  ici 11008   · cmul 11011  2c2 12180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-mulcl 11068
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-clel 2806  df-2 12188
This theorem is referenced by:  imval2  15058  sinf  16033  sinneg  16055  efival  16061  sinadd  16073  dvmptim  25901  sincn  26381  sineq0  26460  sinasin  26826  efiatan2  26854  2efiatan  26855  tanatan  26856  sineq0ALT  45039
  Copyright terms: Public domain W3C validator