Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2mulicn | Structured version Visualization version GIF version |
Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
2mulicn | ⊢ (2 · i) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 11762 | . 2 ⊢ 2 ∈ ℂ | |
2 | ax-icn 10647 | . 2 ⊢ i ∈ ℂ | |
3 | 1, 2 | mulcli 10699 | 1 ⊢ (2 · i) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 (class class class)co 7156 ℂcc 10586 ici 10590 · cmul 10593 2c2 11742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-mulcl 10650 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-cleq 2750 df-clel 2830 df-2 11750 |
This theorem is referenced by: imval2 14571 sinf 15538 sinneg 15560 efival 15566 sinadd 15578 dvmptim 24683 sincn 25152 sineq0 25229 sinasin 25588 efiatan2 25616 2efiatan 25617 tanatan 25618 sineq0ALT 42061 |
Copyright terms: Public domain | W3C validator |