Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2mulicn | Structured version Visualization version GIF version |
Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
2mulicn | ⊢ (2 · i) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12048 | . 2 ⊢ 2 ∈ ℂ | |
2 | ax-icn 10930 | . 2 ⊢ i ∈ ℂ | |
3 | 1, 2 | mulcli 10982 | 1 ⊢ (2 · i) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 ici 10873 · cmul 10876 2c2 12028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-clel 2816 df-2 12036 |
This theorem is referenced by: imval2 14862 sinf 15833 sinneg 15855 efival 15861 sinadd 15873 dvmptim 25134 sincn 25603 sineq0 25680 sinasin 26039 efiatan2 26067 2efiatan 26068 tanatan 26069 sineq0ALT 42557 |
Copyright terms: Public domain | W3C validator |