Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2mulicn | Structured version Visualization version GIF version |
Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
2mulicn | ⊢ (2 · i) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 11978 | . 2 ⊢ 2 ∈ ℂ | |
2 | ax-icn 10861 | . 2 ⊢ i ∈ ℂ | |
3 | 1, 2 | mulcli 10913 | 1 ⊢ (2 · i) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 ici 10804 · cmul 10807 2c2 11958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-2 11966 |
This theorem is referenced by: imval2 14790 sinf 15761 sinneg 15783 efival 15789 sinadd 15801 dvmptim 25039 sincn 25508 sineq0 25585 sinasin 25944 efiatan2 25972 2efiatan 25973 tanatan 25974 sineq0ALT 42446 |
Copyright terms: Public domain | W3C validator |