| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2mulicn | Structured version Visualization version GIF version | ||
| Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 2mulicn | ⊢ (2 · i) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12200 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | ax-icn 11065 | . 2 ⊢ i ∈ ℂ | |
| 3 | 1, 2 | mulcli 11119 | 1 ⊢ (2 · i) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 ici 11008 · cmul 11011 2c2 12180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 df-2 12188 |
| This theorem is referenced by: imval2 15058 sinf 16033 sinneg 16055 efival 16061 sinadd 16073 dvmptim 25901 sincn 26381 sineq0 26460 sinasin 26826 efiatan2 26854 2efiatan 26855 tanatan 26856 sineq0ALT 45039 |
| Copyright terms: Public domain | W3C validator |