MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2mulicn Structured version   Visualization version   GIF version

Theorem 2mulicn 12377
Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn (2 · i) ∈ ℂ

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 12229 . 2 2 ∈ ℂ
2 ax-icn 11111 . 2 i ∈ ℂ
31, 2mulcli 11163 1 (2 · i) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  (class class class)co 7358  cc 11050  ici 11054   · cmul 11057  2c2 12209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-mulcl 11114
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-cleq 2729  df-clel 2815  df-2 12217
This theorem is referenced by:  imval2  15037  sinf  16007  sinneg  16029  efival  16035  sinadd  16047  dvmptim  25337  sincn  25806  sineq0  25883  sinasin  26242  efiatan2  26270  2efiatan  26271  tanatan  26272  sineq0ALT  43226
  Copyright terms: Public domain W3C validator