| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2mulicn | Structured version Visualization version GIF version | ||
| Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 2mulicn | ⊢ (2 · i) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12261 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | ax-icn 11127 | . 2 ⊢ i ∈ ℂ | |
| 3 | 1, 2 | mulcli 11181 | 1 ⊢ (2 · i) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 ici 11070 · cmul 11073 2c2 12241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-2 12249 |
| This theorem is referenced by: imval2 15117 sinf 16092 sinneg 16114 efival 16120 sinadd 16132 dvmptim 25874 sincn 26354 sineq0 26433 sinasin 26799 efiatan2 26827 2efiatan 26828 tanatan 26829 sineq0ALT 44926 |
| Copyright terms: Public domain | W3C validator |