MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2mulicn Structured version   Visualization version   GIF version

Theorem 2mulicn 12348
Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn (2 · i) ∈ ℂ

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 12203 . 2 2 ∈ ℂ
2 ax-icn 11068 . 2 i ∈ ℂ
31, 2mulcli 11122 1 (2 · i) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  (class class class)co 7349  cc 11007  ici 11011   · cmul 11014  2c2 12183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-mulcl 11071
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-clel 2803  df-2 12191
This theorem is referenced by:  imval2  15058  sinf  16033  sinneg  16055  efival  16061  sinadd  16073  dvmptim  25872  sincn  26352  sineq0  26431  sinasin  26797  efiatan2  26825  2efiatan  26826  tanatan  26827  sineq0ALT  44910
  Copyright terms: Public domain W3C validator