| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2mulicn | Structured version Visualization version GIF version | ||
| Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 2mulicn | ⊢ (2 · i) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12315 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | ax-icn 11188 | . 2 ⊢ i ∈ ℂ | |
| 3 | 1, 2 | mulcli 11242 | 1 ⊢ (2 · i) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 ici 11131 · cmul 11134 2c2 12295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-mulcl 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-clel 2809 df-2 12303 |
| This theorem is referenced by: imval2 15170 sinf 16142 sinneg 16164 efival 16170 sinadd 16182 dvmptim 25926 sincn 26406 sineq0 26485 sinasin 26851 efiatan2 26879 2efiatan 26880 tanatan 26881 sineq0ALT 44961 |
| Copyright terms: Public domain | W3C validator |