MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2mulicn Structured version   Visualization version   GIF version

Theorem 2mulicn 12465
Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn (2 · i) ∈ ℂ

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 12315 . 2 2 ∈ ℂ
2 ax-icn 11188 . 2 i ∈ ℂ
31, 2mulcli 11242 1 (2 · i) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  (class class class)co 7405  cc 11127  ici 11131   · cmul 11134  2c2 12295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-mulcl 11191
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2727  df-clel 2809  df-2 12303
This theorem is referenced by:  imval2  15170  sinf  16142  sinneg  16164  efival  16170  sinadd  16182  dvmptim  25926  sincn  26406  sineq0  26485  sinasin  26851  efiatan2  26879  2efiatan  26880  tanatan  26881  sineq0ALT  44961
  Copyright terms: Public domain W3C validator