| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2mulicn | Structured version Visualization version GIF version | ||
| Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 2mulicn | ⊢ (2 · i) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12203 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | ax-icn 11068 | . 2 ⊢ i ∈ ℂ | |
| 3 | 1, 2 | mulcli 11122 | 1 ⊢ (2 · i) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7349 ℂcc 11007 ici 11011 · cmul 11014 2c2 12183 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-mulcl 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-2 12191 |
| This theorem is referenced by: imval2 15058 sinf 16033 sinneg 16055 efival 16061 sinadd 16073 dvmptim 25872 sincn 26352 sineq0 26431 sinasin 26797 efiatan2 26825 2efiatan 26826 tanatan 26827 sineq0ALT 44910 |
| Copyright terms: Public domain | W3C validator |