MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2mulicn Structured version   Visualization version   GIF version

Theorem 2mulicn 12489
Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn (2 · i) ∈ ℂ

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 12341 . 2 2 ∈ ℂ
2 ax-icn 11214 . 2 i ∈ ℂ
31, 2mulcli 11268 1 (2 · i) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  (class class class)co 7431  cc 11153  ici 11157   · cmul 11160  2c2 12321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-mulcl 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2729  df-clel 2816  df-2 12329
This theorem is referenced by:  imval2  15190  sinf  16160  sinneg  16182  efival  16188  sinadd  16200  dvmptim  26008  sincn  26488  sineq0  26566  sinasin  26932  efiatan2  26960  2efiatan  26961  tanatan  26962  sineq0ALT  44957
  Copyright terms: Public domain W3C validator