MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2mulicn Structured version   Visualization version   GIF version

Theorem 2mulicn 12442
Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn (2 · i) ∈ ℂ

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 12294 . 2 2 ∈ ℂ
2 ax-icn 11175 . 2 i ∈ ℂ
31, 2mulcli 11228 1 (2 · i) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  (class class class)co 7412  cc 11114  ici 11118   · cmul 11121  2c2 12274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-mulcl 11178
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1781  df-cleq 2723  df-clel 2809  df-2 12282
This theorem is referenced by:  imval2  15105  sinf  16074  sinneg  16096  efival  16102  sinadd  16114  dvmptim  25821  sincn  26295  sineq0  26372  sinasin  26734  efiatan2  26762  2efiatan  26763  tanatan  26764  sineq0ALT  44160
  Copyright terms: Public domain W3C validator