MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2mulicn Structured version   Visualization version   GIF version

Theorem 2mulicn 12413
Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn (2 · i) ∈ ℂ

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 12268 . 2 2 ∈ ℂ
2 ax-icn 11134 . 2 i ∈ ℂ
31, 2mulcli 11188 1 (2 · i) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  (class class class)co 7390  cc 11073  ici 11077   · cmul 11080  2c2 12248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-mulcl 11137
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2722  df-clel 2804  df-2 12256
This theorem is referenced by:  imval2  15124  sinf  16099  sinneg  16121  efival  16127  sinadd  16139  dvmptim  25881  sincn  26361  sineq0  26440  sinasin  26806  efiatan2  26834  2efiatan  26835  tanatan  26836  sineq0ALT  44933
  Copyright terms: Public domain W3C validator