MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2mulicn Structured version   Visualization version   GIF version

Theorem 2mulicn 12126
Description: (2 · i) ∈ ℂ. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2mulicn (2 · i) ∈ ℂ

Proof of Theorem 2mulicn
StepHypRef Expression
1 2cn 11978 . 2 2 ∈ ℂ
2 ax-icn 10861 . 2 i ∈ ℂ
31, 2mulcli 10913 1 (2 · i) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  (class class class)co 7255  cc 10800  ici 10804   · cmul 10807  2c2 11958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-mulcl 10864
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730  df-clel 2817  df-2 11966
This theorem is referenced by:  imval2  14790  sinf  15761  sinneg  15783  efival  15789  sinadd  15801  dvmptim  25039  sincn  25508  sineq0  25585  sinasin  25944  efiatan2  25972  2efiatan  25973  tanatan  25974  sineq0ALT  42446
  Copyright terms: Public domain W3C validator