MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinadd Structured version   Visualization version   GIF version

Theorem sinadd 16075
Description: Addition formula for sine. Equation 14 of [Gleason] p. 310. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
sinadd ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))))

Proof of Theorem sinadd
StepHypRef Expression
1 addcl 11095 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
2 sinval 16033 . . 3 ((𝐴 + 𝐵) ∈ ℂ → (sin‘(𝐴 + 𝐵)) = (((exp‘(i · (𝐴 + 𝐵))) − (exp‘(-i · (𝐴 + 𝐵)))) / (2 · i)))
31, 2syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + 𝐵)) = (((exp‘(i · (𝐴 + 𝐵))) − (exp‘(-i · (𝐴 + 𝐵)))) / (2 · i)))
4 2cn 12207 . . . . . . 7 2 ∈ ℂ
54a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈ ℂ)
6 ax-icn 11072 . . . . . . 7 i ∈ ℂ
76a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → i ∈ ℂ)
8 coscl 16038 . . . . . . . . 9 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
98adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘𝐴) ∈ ℂ)
10 sincl 16037 . . . . . . . . 9 (𝐵 ∈ ℂ → (sin‘𝐵) ∈ ℂ)
1110adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘𝐵) ∈ ℂ)
129, 11mulcld 11139 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (sin‘𝐵)) ∈ ℂ)
13 sincl 16037 . . . . . . . . 9 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
1413adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘𝐴) ∈ ℂ)
15 coscl 16038 . . . . . . . . 9 (𝐵 ∈ ℂ → (cos‘𝐵) ∈ ℂ)
1615adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘𝐵) ∈ ℂ)
1714, 16mulcld 11139 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (cos‘𝐵)) ∈ ℂ)
1812, 17addcld 11138 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵))) ∈ ℂ)
195, 7, 18mulassd 11142 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · i) · (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵)))) = (2 · (i · (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵))))))
207, 12, 17adddid 11143 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵)))) = ((i · ((cos‘𝐴) · (sin‘𝐵))) + (i · ((sin‘𝐴) · (cos‘𝐵)))))
217, 9, 11mul12d 11329 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((cos‘𝐴) · (sin‘𝐵))) = ((cos‘𝐴) · (i · (sin‘𝐵))))
2214, 16mulcomd 11140 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (cos‘𝐵)) = ((cos‘𝐵) · (sin‘𝐴)))
2322oveq2d 7368 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((sin‘𝐴) · (cos‘𝐵))) = (i · ((cos‘𝐵) · (sin‘𝐴))))
247, 16, 14mul12d 11329 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((cos‘𝐵) · (sin‘𝐴))) = ((cos‘𝐵) · (i · (sin‘𝐴))))
2523, 24eqtrd 2768 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((sin‘𝐴) · (cos‘𝐵))) = ((cos‘𝐵) · (i · (sin‘𝐴))))
2621, 25oveq12d 7370 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · ((cos‘𝐴) · (sin‘𝐵))) + (i · ((sin‘𝐴) · (cos‘𝐵)))) = (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))))
2720, 26eqtrd 2768 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵)))) = (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))))
2827oveq2d 7368 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (i · (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵))))) = (2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
2919, 28eqtrd 2768 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · i) · (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵)))) = (2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
30 mulcl 11097 . . . . . . . . 9 ((i ∈ ℂ ∧ (sin‘𝐵) ∈ ℂ) → (i · (sin‘𝐵)) ∈ ℂ)
316, 11, 30sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (sin‘𝐵)) ∈ ℂ)
329, 31mulcld 11139 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (i · (sin‘𝐵))) ∈ ℂ)
33 mulcl 11097 . . . . . . . . 9 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
346, 14, 33sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
3516, 34mulcld 11139 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐵) · (i · (sin‘𝐴))) ∈ ℂ)
3632, 35addcld 11138 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))) ∈ ℂ)
37 mulcl 11097 . . . . . 6 ((2 ∈ ℂ ∧ (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))) ∈ ℂ) → (2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) ∈ ℂ)
384, 36, 37sylancr 587 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) ∈ ℂ)
39 2mulicn 12352 . . . . . 6 (2 · i) ∈ ℂ
4039a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · i) ∈ ℂ)
41 2muline0 12353 . . . . . 6 (2 · i) ≠ 0
4241a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · i) ≠ 0)
4338, 40, 18, 42divmuld 11926 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) / (2 · i)) = (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵))) ↔ ((2 · i) · (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵)))) = (2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))))))
4429, 43mpbird 257 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) / (2 · i)) = (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵))))
459, 16mulcld 11139 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ)
4631, 34mulcld 11139 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (sin‘𝐵)) · (i · (sin‘𝐴))) ∈ ℂ)
4745, 46addcld 11138 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) ∈ ℂ)
4847, 36, 36pnncand 11518 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) − ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))))) = ((((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
49 adddi 11102 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (𝐴 + 𝐵)) = ((i · 𝐴) + (i · 𝐵)))
506, 49mp3an1 1450 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (𝐴 + 𝐵)) = ((i · 𝐴) + (i · 𝐵)))
5150fveq2d 6832 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(i · (𝐴 + 𝐵))) = (exp‘((i · 𝐴) + (i · 𝐵))))
52 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
53 mulcl 11097 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
546, 52, 53sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
55 simpr 484 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
56 mulcl 11097 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
576, 55, 56sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
58 efadd 16003 . . . . . . . 8 (((i · 𝐴) ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐵))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))))
5954, 57, 58syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐵))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))))
60 efival 16063 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
61 efival 16063 . . . . . . . . 9 (𝐵 ∈ ℂ → (exp‘(i · 𝐵)) = ((cos‘𝐵) + (i · (sin‘𝐵))))
6260, 61oveqan12d 7371 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))) = (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐵) + (i · (sin‘𝐵)))))
639, 34, 16, 31muladdd 11582 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) + (i · (sin‘𝐴))) · ((cos‘𝐵) + (i · (sin‘𝐵)))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
6462, 63eqtrd 2768 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
6551, 59, 643eqtrd 2772 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(i · (𝐴 + 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
66 negicn 11368 . . . . . . . . 9 -i ∈ ℂ
67 adddi 11102 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · (𝐴 + 𝐵)) = ((-i · 𝐴) + (-i · 𝐵)))
6866, 67mp3an1 1450 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · (𝐴 + 𝐵)) = ((-i · 𝐴) + (-i · 𝐵)))
6968fveq2d 6832 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(-i · (𝐴 + 𝐵))) = (exp‘((-i · 𝐴) + (-i · 𝐵))))
70 mulcl 11097 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
7166, 52, 70sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
72 mulcl 11097 . . . . . . . . 9 ((-i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐵) ∈ ℂ)
7366, 55, 72sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐵) ∈ ℂ)
74 efadd 16003 . . . . . . . 8 (((-i · 𝐴) ∈ ℂ ∧ (-i · 𝐵) ∈ ℂ) → (exp‘((-i · 𝐴) + (-i · 𝐵))) = ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))))
7571, 73, 74syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘((-i · 𝐴) + (-i · 𝐵))) = ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))))
76 efmival 16064 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴))))
77 efmival 16064 . . . . . . . . 9 (𝐵 ∈ ℂ → (exp‘(-i · 𝐵)) = ((cos‘𝐵) − (i · (sin‘𝐵))))
7876, 77oveqan12d 7371 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))) = (((cos‘𝐴) − (i · (sin‘𝐴))) · ((cos‘𝐵) − (i · (sin‘𝐵)))))
799, 34, 16, 31mulsubd 11583 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘𝐴) − (i · (sin‘𝐴))) · ((cos‘𝐵) − (i · (sin‘𝐵)))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
8078, 79eqtrd 2768 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(-i · 𝐴)) · (exp‘(-i · 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
8169, 75, 803eqtrd 2772 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(-i · (𝐴 + 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
8265, 81oveq12d 7370 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · (𝐴 + 𝐵))) − (exp‘(-i · (𝐴 + 𝐵)))) = (((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) − ((((cos‘𝐴) · (cos‘𝐵)) + ((i · (sin‘𝐵)) · (i · (sin‘𝐴)))) − (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))))))
83362timesd 12371 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) = ((((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴)))) + (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
8448, 82, 833eqtr4d 2778 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘(i · (𝐴 + 𝐵))) − (exp‘(-i · (𝐴 + 𝐵)))) = (2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))))
8584oveq1d 7367 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((exp‘(i · (𝐴 + 𝐵))) − (exp‘(-i · (𝐴 + 𝐵)))) / (2 · i)) = ((2 · (((cos‘𝐴) · (i · (sin‘𝐵))) + ((cos‘𝐵) · (i · (sin‘𝐴))))) / (2 · i)))
8617, 12addcomd 11322 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))) = (((cos‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵))))
8744, 85, 863eqtr4d 2778 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((exp‘(i · (𝐴 + 𝐵))) − (exp‘(-i · (𝐴 + 𝐵)))) / (2 · i)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))))
883, 87eqtrd 2768 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  cfv 6486  (class class class)co 7352  cc 11011  0cc0 11013  ici 11015   + caddc 11016   · cmul 11018  cmin 11351  -cneg 11352   / cdiv 11781  2c2 12187  expce 15970  sincsin 15972  cosccos 15973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-ico 13253  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-sin 15978  df-cos 15979
This theorem is referenced by:  tanadd  16078  sinsub  16079  addsin  16081  subsin  16082  sin2t  16088  demoivreALT  16112  sinppi  26426  sinhalfpip  26429  sinmulcos  45987
  Copyright terms: Public domain W3C validator