MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptim Structured version   Visualization version   GIF version

Theorem dvmptim 25902
Description: Function-builder for derivative, imaginary part. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
dvmptcj.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptcj.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptcj.da (𝜑 → (ℝ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
Assertion
Ref Expression
dvmptim (𝜑 → (ℝ D (𝑥𝑋 ↦ (ℑ‘𝐴))) = (𝑥𝑋 ↦ (ℑ‘𝐵)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem dvmptim
StepHypRef Expression
1 reelprrecn 11105 . . . 4 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
3 dvmptcj.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
43cjcld 15105 . . . 4 ((𝜑𝑥𝑋) → (∗‘𝐴) ∈ ℂ)
53, 4subcld 11479 . . 3 ((𝜑𝑥𝑋) → (𝐴 − (∗‘𝐴)) ∈ ℂ)
6 dvmptcj.b . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑉)
7 dvmptcj.da . . . . 5 (𝜑 → (ℝ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
82, 3, 6, 7dvmptcl 25891 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
98cjcld 15105 . . . 4 ((𝜑𝑥𝑋) → (∗‘𝐵) ∈ ℂ)
108, 9subcld 11479 . . 3 ((𝜑𝑥𝑋) → (𝐵 − (∗‘𝐵)) ∈ ℂ)
113, 6, 7dvmptcj 25900 . . . 4 (𝜑 → (ℝ D (𝑥𝑋 ↦ (∗‘𝐴))) = (𝑥𝑋 ↦ (∗‘𝐵)))
122, 3, 6, 7, 4, 9, 11dvmptsub 25899 . . 3 (𝜑 → (ℝ D (𝑥𝑋 ↦ (𝐴 − (∗‘𝐴)))) = (𝑥𝑋 ↦ (𝐵 − (∗‘𝐵))))
13 2mulicn 12352 . . . . 5 (2 · i) ∈ ℂ
14 2muline0 12353 . . . . 5 (2 · i) ≠ 0
1513, 14reccli 11858 . . . 4 (1 / (2 · i)) ∈ ℂ
1615a1i 11 . . 3 (𝜑 → (1 / (2 · i)) ∈ ℂ)
172, 5, 10, 12, 16dvmptcmul 25896 . 2 (𝜑 → (ℝ D (𝑥𝑋 ↦ ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))) = (𝑥𝑋 ↦ ((1 / (2 · i)) · (𝐵 − (∗‘𝐵)))))
18 imval2 15060 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i)))
193, 18syl 17 . . . . 5 ((𝜑𝑥𝑋) → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i)))
20 divrec2 11800 . . . . . . 7 (((𝐴 − (∗‘𝐴)) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → ((𝐴 − (∗‘𝐴)) / (2 · i)) = ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))
2113, 14, 20mp3an23 1455 . . . . . 6 ((𝐴 − (∗‘𝐴)) ∈ ℂ → ((𝐴 − (∗‘𝐴)) / (2 · i)) = ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))
225, 21syl 17 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴 − (∗‘𝐴)) / (2 · i)) = ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))
2319, 22eqtrd 2768 . . . 4 ((𝜑𝑥𝑋) → (ℑ‘𝐴) = ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))
2423mpteq2dva 5186 . . 3 (𝜑 → (𝑥𝑋 ↦ (ℑ‘𝐴)) = (𝑥𝑋 ↦ ((1 / (2 · i)) · (𝐴 − (∗‘𝐴)))))
2524oveq2d 7368 . 2 (𝜑 → (ℝ D (𝑥𝑋 ↦ (ℑ‘𝐴))) = (ℝ D (𝑥𝑋 ↦ ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))))
26 imval2 15060 . . . . 5 (𝐵 ∈ ℂ → (ℑ‘𝐵) = ((𝐵 − (∗‘𝐵)) / (2 · i)))
278, 26syl 17 . . . 4 ((𝜑𝑥𝑋) → (ℑ‘𝐵) = ((𝐵 − (∗‘𝐵)) / (2 · i)))
28 divrec2 11800 . . . . . 6 (((𝐵 − (∗‘𝐵)) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → ((𝐵 − (∗‘𝐵)) / (2 · i)) = ((1 / (2 · i)) · (𝐵 − (∗‘𝐵))))
2913, 14, 28mp3an23 1455 . . . . 5 ((𝐵 − (∗‘𝐵)) ∈ ℂ → ((𝐵 − (∗‘𝐵)) / (2 · i)) = ((1 / (2 · i)) · (𝐵 − (∗‘𝐵))))
3010, 29syl 17 . . . 4 ((𝜑𝑥𝑋) → ((𝐵 − (∗‘𝐵)) / (2 · i)) = ((1 / (2 · i)) · (𝐵 − (∗‘𝐵))))
3127, 30eqtrd 2768 . . 3 ((𝜑𝑥𝑋) → (ℑ‘𝐵) = ((1 / (2 · i)) · (𝐵 − (∗‘𝐵))))
3231mpteq2dva 5186 . 2 (𝜑 → (𝑥𝑋 ↦ (ℑ‘𝐵)) = (𝑥𝑋 ↦ ((1 / (2 · i)) · (𝐵 − (∗‘𝐵)))))
3317, 25, 323eqtr4d 2778 1 (𝜑 → (ℝ D (𝑥𝑋 ↦ (ℑ‘𝐴))) = (𝑥𝑋 ↦ (ℑ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  {cpr 4577  cmpt 5174  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014  ici 11015   · cmul 11018  cmin 11351   / cdiv 11781  2c2 12187  ccj 15005  cim 15007   D cdv 25792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-icc 13254  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator