MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptim Structured version   Visualization version   GIF version

Theorem dvmptim 25993
Description: Function-builder for derivative, imaginary part. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
dvmptcj.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptcj.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptcj.da (𝜑 → (ℝ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
Assertion
Ref Expression
dvmptim (𝜑 → (ℝ D (𝑥𝑋 ↦ (ℑ‘𝐴))) = (𝑥𝑋 ↦ (ℑ‘𝐵)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem dvmptim
StepHypRef Expression
1 reelprrecn 11250 . . . 4 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
3 dvmptcj.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
43cjcld 15201 . . . 4 ((𝜑𝑥𝑋) → (∗‘𝐴) ∈ ℂ)
53, 4subcld 11621 . . 3 ((𝜑𝑥𝑋) → (𝐴 − (∗‘𝐴)) ∈ ℂ)
6 dvmptcj.b . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑉)
7 dvmptcj.da . . . . 5 (𝜑 → (ℝ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
82, 3, 6, 7dvmptcl 25982 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
98cjcld 15201 . . . 4 ((𝜑𝑥𝑋) → (∗‘𝐵) ∈ ℂ)
108, 9subcld 11621 . . 3 ((𝜑𝑥𝑋) → (𝐵 − (∗‘𝐵)) ∈ ℂ)
113, 6, 7dvmptcj 25991 . . . 4 (𝜑 → (ℝ D (𝑥𝑋 ↦ (∗‘𝐴))) = (𝑥𝑋 ↦ (∗‘𝐵)))
122, 3, 6, 7, 4, 9, 11dvmptsub 25990 . . 3 (𝜑 → (ℝ D (𝑥𝑋 ↦ (𝐴 − (∗‘𝐴)))) = (𝑥𝑋 ↦ (𝐵 − (∗‘𝐵))))
13 2mulicn 12487 . . . . 5 (2 · i) ∈ ℂ
14 2muline0 12488 . . . . 5 (2 · i) ≠ 0
1513, 14reccli 11995 . . . 4 (1 / (2 · i)) ∈ ℂ
1615a1i 11 . . 3 (𝜑 → (1 / (2 · i)) ∈ ℂ)
172, 5, 10, 12, 16dvmptcmul 25987 . 2 (𝜑 → (ℝ D (𝑥𝑋 ↦ ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))) = (𝑥𝑋 ↦ ((1 / (2 · i)) · (𝐵 − (∗‘𝐵)))))
18 imval2 15156 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i)))
193, 18syl 17 . . . . 5 ((𝜑𝑥𝑋) → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i)))
20 divrec2 11940 . . . . . . 7 (((𝐴 − (∗‘𝐴)) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → ((𝐴 − (∗‘𝐴)) / (2 · i)) = ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))
2113, 14, 20mp3an23 1450 . . . . . 6 ((𝐴 − (∗‘𝐴)) ∈ ℂ → ((𝐴 − (∗‘𝐴)) / (2 · i)) = ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))
225, 21syl 17 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴 − (∗‘𝐴)) / (2 · i)) = ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))
2319, 22eqtrd 2766 . . . 4 ((𝜑𝑥𝑋) → (ℑ‘𝐴) = ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))
2423mpteq2dva 5253 . . 3 (𝜑 → (𝑥𝑋 ↦ (ℑ‘𝐴)) = (𝑥𝑋 ↦ ((1 / (2 · i)) · (𝐴 − (∗‘𝐴)))))
2524oveq2d 7440 . 2 (𝜑 → (ℝ D (𝑥𝑋 ↦ (ℑ‘𝐴))) = (ℝ D (𝑥𝑋 ↦ ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))))
26 imval2 15156 . . . . 5 (𝐵 ∈ ℂ → (ℑ‘𝐵) = ((𝐵 − (∗‘𝐵)) / (2 · i)))
278, 26syl 17 . . . 4 ((𝜑𝑥𝑋) → (ℑ‘𝐵) = ((𝐵 − (∗‘𝐵)) / (2 · i)))
28 divrec2 11940 . . . . . 6 (((𝐵 − (∗‘𝐵)) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → ((𝐵 − (∗‘𝐵)) / (2 · i)) = ((1 / (2 · i)) · (𝐵 − (∗‘𝐵))))
2913, 14, 28mp3an23 1450 . . . . 5 ((𝐵 − (∗‘𝐵)) ∈ ℂ → ((𝐵 − (∗‘𝐵)) / (2 · i)) = ((1 / (2 · i)) · (𝐵 − (∗‘𝐵))))
3010, 29syl 17 . . . 4 ((𝜑𝑥𝑋) → ((𝐵 − (∗‘𝐵)) / (2 · i)) = ((1 / (2 · i)) · (𝐵 − (∗‘𝐵))))
3127, 30eqtrd 2766 . . 3 ((𝜑𝑥𝑋) → (ℑ‘𝐵) = ((1 / (2 · i)) · (𝐵 − (∗‘𝐵))))
3231mpteq2dva 5253 . 2 (𝜑 → (𝑥𝑋 ↦ (ℑ‘𝐵)) = (𝑥𝑋 ↦ ((1 / (2 · i)) · (𝐵 − (∗‘𝐵)))))
3317, 25, 323eqtr4d 2776 1 (𝜑 → (ℝ D (𝑥𝑋 ↦ (ℑ‘𝐴))) = (𝑥𝑋 ↦ (ℑ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wne 2930  {cpr 4635  cmpt 5236  cfv 6554  (class class class)co 7424  cc 11156  cr 11157  0cc0 11158  1c1 11159  ici 11160   · cmul 11163  cmin 11494   / cdiv 11921  2c2 12319  ccj 15101  cim 15103   D cdv 25883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-fi 9454  df-sup 9485  df-inf 9486  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ioo 13382  df-icc 13385  df-fz 13539  df-fzo 13682  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-mulg 19062  df-cntz 19311  df-cmn 19780  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-fbas 21340  df-fg 21341  df-cnfld 21344  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cld 23014  df-ntr 23015  df-cls 23016  df-nei 23093  df-lp 23131  df-perf 23132  df-cn 23222  df-cnp 23223  df-haus 23310  df-tx 23557  df-hmeo 23750  df-fil 23841  df-fm 23933  df-flim 23934  df-flf 23935  df-xms 24317  df-ms 24318  df-tms 24319  df-cncf 24889  df-limc 25886  df-dv 25887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator