MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptim Structured version   Visualization version   GIF version

Theorem dvmptim 25890
Description: Function-builder for derivative, imaginary part. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
dvmptcj.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptcj.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptcj.da (𝜑 → (ℝ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
Assertion
Ref Expression
dvmptim (𝜑 → (ℝ D (𝑥𝑋 ↦ (ℑ‘𝐴))) = (𝑥𝑋 ↦ (ℑ‘𝐵)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem dvmptim
StepHypRef Expression
1 reelprrecn 11120 . . . 4 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
3 dvmptcj.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
43cjcld 15121 . . . 4 ((𝜑𝑥𝑋) → (∗‘𝐴) ∈ ℂ)
53, 4subcld 11493 . . 3 ((𝜑𝑥𝑋) → (𝐴 − (∗‘𝐴)) ∈ ℂ)
6 dvmptcj.b . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑉)
7 dvmptcj.da . . . . 5 (𝜑 → (ℝ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
82, 3, 6, 7dvmptcl 25879 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
98cjcld 15121 . . . 4 ((𝜑𝑥𝑋) → (∗‘𝐵) ∈ ℂ)
108, 9subcld 11493 . . 3 ((𝜑𝑥𝑋) → (𝐵 − (∗‘𝐵)) ∈ ℂ)
113, 6, 7dvmptcj 25888 . . . 4 (𝜑 → (ℝ D (𝑥𝑋 ↦ (∗‘𝐴))) = (𝑥𝑋 ↦ (∗‘𝐵)))
122, 3, 6, 7, 4, 9, 11dvmptsub 25887 . . 3 (𝜑 → (ℝ D (𝑥𝑋 ↦ (𝐴 − (∗‘𝐴)))) = (𝑥𝑋 ↦ (𝐵 − (∗‘𝐵))))
13 2mulicn 12366 . . . . 5 (2 · i) ∈ ℂ
14 2muline0 12367 . . . . 5 (2 · i) ≠ 0
1513, 14reccli 11872 . . . 4 (1 / (2 · i)) ∈ ℂ
1615a1i 11 . . 3 (𝜑 → (1 / (2 · i)) ∈ ℂ)
172, 5, 10, 12, 16dvmptcmul 25884 . 2 (𝜑 → (ℝ D (𝑥𝑋 ↦ ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))) = (𝑥𝑋 ↦ ((1 / (2 · i)) · (𝐵 − (∗‘𝐵)))))
18 imval2 15076 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i)))
193, 18syl 17 . . . . 5 ((𝜑𝑥𝑋) → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i)))
20 divrec2 11814 . . . . . . 7 (((𝐴 − (∗‘𝐴)) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → ((𝐴 − (∗‘𝐴)) / (2 · i)) = ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))
2113, 14, 20mp3an23 1455 . . . . . 6 ((𝐴 − (∗‘𝐴)) ∈ ℂ → ((𝐴 − (∗‘𝐴)) / (2 · i)) = ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))
225, 21syl 17 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴 − (∗‘𝐴)) / (2 · i)) = ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))
2319, 22eqtrd 2764 . . . 4 ((𝜑𝑥𝑋) → (ℑ‘𝐴) = ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))
2423mpteq2dva 5188 . . 3 (𝜑 → (𝑥𝑋 ↦ (ℑ‘𝐴)) = (𝑥𝑋 ↦ ((1 / (2 · i)) · (𝐴 − (∗‘𝐴)))))
2524oveq2d 7369 . 2 (𝜑 → (ℝ D (𝑥𝑋 ↦ (ℑ‘𝐴))) = (ℝ D (𝑥𝑋 ↦ ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))))
26 imval2 15076 . . . . 5 (𝐵 ∈ ℂ → (ℑ‘𝐵) = ((𝐵 − (∗‘𝐵)) / (2 · i)))
278, 26syl 17 . . . 4 ((𝜑𝑥𝑋) → (ℑ‘𝐵) = ((𝐵 − (∗‘𝐵)) / (2 · i)))
28 divrec2 11814 . . . . . 6 (((𝐵 − (∗‘𝐵)) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → ((𝐵 − (∗‘𝐵)) / (2 · i)) = ((1 / (2 · i)) · (𝐵 − (∗‘𝐵))))
2913, 14, 28mp3an23 1455 . . . . 5 ((𝐵 − (∗‘𝐵)) ∈ ℂ → ((𝐵 − (∗‘𝐵)) / (2 · i)) = ((1 / (2 · i)) · (𝐵 − (∗‘𝐵))))
3010, 29syl 17 . . . 4 ((𝜑𝑥𝑋) → ((𝐵 − (∗‘𝐵)) / (2 · i)) = ((1 / (2 · i)) · (𝐵 − (∗‘𝐵))))
3127, 30eqtrd 2764 . . 3 ((𝜑𝑥𝑋) → (ℑ‘𝐵) = ((1 / (2 · i)) · (𝐵 − (∗‘𝐵))))
3231mpteq2dva 5188 . 2 (𝜑 → (𝑥𝑋 ↦ (ℑ‘𝐵)) = (𝑥𝑋 ↦ ((1 / (2 · i)) · (𝐵 − (∗‘𝐵)))))
3317, 25, 323eqtr4d 2774 1 (𝜑 → (ℝ D (𝑥𝑋 ↦ (ℑ‘𝐴))) = (𝑥𝑋 ↦ (ℑ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  {cpr 4581  cmpt 5176  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029  ici 11030   · cmul 11033  cmin 11365   / cdiv 11795  2c2 12201  ccj 15021  cim 15023   D cdv 25780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-icc 13273  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator