Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvmptim | Structured version Visualization version GIF version |
Description: Function-builder for derivative, imaginary part. (Contributed by Mario Carneiro, 1-Sep-2014.) |
Ref | Expression |
---|---|
dvmptcj.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
dvmptcj.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
dvmptcj.da | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
Ref | Expression |
---|---|
dvmptim | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (ℑ‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (ℑ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reelprrecn 11064 | . . . 4 ⊢ ℝ ∈ {ℝ, ℂ} | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
3 | dvmptcj.a | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
4 | 3 | cjcld 15006 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (∗‘𝐴) ∈ ℂ) |
5 | 3, 4 | subcld 11433 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 − (∗‘𝐴)) ∈ ℂ) |
6 | dvmptcj.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
7 | dvmptcj.da | . . . . 5 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
8 | 2, 3, 6, 7 | dvmptcl 25229 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
9 | 8 | cjcld 15006 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (∗‘𝐵) ∈ ℂ) |
10 | 8, 9 | subcld 11433 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 − (∗‘𝐵)) ∈ ℂ) |
11 | 3, 6, 7 | dvmptcj 25238 | . . . 4 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) |
12 | 2, 3, 6, 7, 4, 9, 11 | dvmptsub 25237 | . . 3 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (𝐴 − (∗‘𝐴)))) = (𝑥 ∈ 𝑋 ↦ (𝐵 − (∗‘𝐵)))) |
13 | 2mulicn 12297 | . . . . 5 ⊢ (2 · i) ∈ ℂ | |
14 | 2muline0 12298 | . . . . 5 ⊢ (2 · i) ≠ 0 | |
15 | 13, 14 | reccli 11806 | . . . 4 ⊢ (1 / (2 · i)) ∈ ℂ |
16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → (1 / (2 · i)) ∈ ℂ) |
17 | 2, 5, 10, 12, 16 | dvmptcmul 25234 | . 2 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))) = (𝑥 ∈ 𝑋 ↦ ((1 / (2 · i)) · (𝐵 − (∗‘𝐵))))) |
18 | imval2 14961 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i))) | |
19 | 3, 18 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i))) |
20 | divrec2 11751 | . . . . . . 7 ⊢ (((𝐴 − (∗‘𝐴)) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → ((𝐴 − (∗‘𝐴)) / (2 · i)) = ((1 / (2 · i)) · (𝐴 − (∗‘𝐴)))) | |
21 | 13, 14, 20 | mp3an23 1452 | . . . . . 6 ⊢ ((𝐴 − (∗‘𝐴)) ∈ ℂ → ((𝐴 − (∗‘𝐴)) / (2 · i)) = ((1 / (2 · i)) · (𝐴 − (∗‘𝐴)))) |
22 | 5, 21 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐴 − (∗‘𝐴)) / (2 · i)) = ((1 / (2 · i)) · (𝐴 − (∗‘𝐴)))) |
23 | 19, 22 | eqtrd 2776 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (ℑ‘𝐴) = ((1 / (2 · i)) · (𝐴 − (∗‘𝐴)))) |
24 | 23 | mpteq2dva 5192 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (ℑ‘𝐴)) = (𝑥 ∈ 𝑋 ↦ ((1 / (2 · i)) · (𝐴 − (∗‘𝐴))))) |
25 | 24 | oveq2d 7353 | . 2 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (ℑ‘𝐴))) = (ℝ D (𝑥 ∈ 𝑋 ↦ ((1 / (2 · i)) · (𝐴 − (∗‘𝐴)))))) |
26 | imval2 14961 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (ℑ‘𝐵) = ((𝐵 − (∗‘𝐵)) / (2 · i))) | |
27 | 8, 26 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (ℑ‘𝐵) = ((𝐵 − (∗‘𝐵)) / (2 · i))) |
28 | divrec2 11751 | . . . . . 6 ⊢ (((𝐵 − (∗‘𝐵)) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → ((𝐵 − (∗‘𝐵)) / (2 · i)) = ((1 / (2 · i)) · (𝐵 − (∗‘𝐵)))) | |
29 | 13, 14, 28 | mp3an23 1452 | . . . . 5 ⊢ ((𝐵 − (∗‘𝐵)) ∈ ℂ → ((𝐵 − (∗‘𝐵)) / (2 · i)) = ((1 / (2 · i)) · (𝐵 − (∗‘𝐵)))) |
30 | 10, 29 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐵 − (∗‘𝐵)) / (2 · i)) = ((1 / (2 · i)) · (𝐵 − (∗‘𝐵)))) |
31 | 27, 30 | eqtrd 2776 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (ℑ‘𝐵) = ((1 / (2 · i)) · (𝐵 − (∗‘𝐵)))) |
32 | 31 | mpteq2dva 5192 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (ℑ‘𝐵)) = (𝑥 ∈ 𝑋 ↦ ((1 / (2 · i)) · (𝐵 − (∗‘𝐵))))) |
33 | 17, 25, 32 | 3eqtr4d 2786 | 1 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (ℑ‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (ℑ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 {cpr 4575 ↦ cmpt 5175 ‘cfv 6479 (class class class)co 7337 ℂcc 10970 ℝcr 10971 0cc0 10972 1c1 10973 ici 10974 · cmul 10977 − cmin 11306 / cdiv 11733 2c2 12129 ∗ccj 14906 ℑcim 14908 D cdv 25133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 ax-addf 11051 ax-mulf 11052 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-om 7781 df-1st 7899 df-2nd 7900 df-supp 8048 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-2o 8368 df-er 8569 df-map 8688 df-pm 8689 df-ixp 8757 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-fsupp 9227 df-fi 9268 df-sup 9299 df-inf 9300 df-oi 9367 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-q 12790 df-rp 12832 df-xneg 12949 df-xadd 12950 df-xmul 12951 df-ioo 13184 df-icc 13187 df-fz 13341 df-fzo 13484 df-seq 13823 df-exp 13884 df-hash 14146 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-starv 17074 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-unif 17082 df-hom 17083 df-cco 17084 df-rest 17230 df-topn 17231 df-0g 17249 df-gsum 17250 df-topgen 17251 df-pt 17252 df-prds 17255 df-xrs 17310 df-qtop 17315 df-imas 17316 df-xps 17318 df-mre 17392 df-mrc 17393 df-acs 17395 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-submnd 18528 df-mulg 18797 df-cntz 19019 df-cmn 19483 df-psmet 20695 df-xmet 20696 df-met 20697 df-bl 20698 df-mopn 20699 df-fbas 20700 df-fg 20701 df-cnfld 20704 df-top 22149 df-topon 22166 df-topsp 22188 df-bases 22202 df-cld 22276 df-ntr 22277 df-cls 22278 df-nei 22355 df-lp 22393 df-perf 22394 df-cn 22484 df-cnp 22485 df-haus 22572 df-tx 22819 df-hmeo 23012 df-fil 23103 df-fm 23195 df-flim 23196 df-flf 23197 df-xms 23579 df-ms 23580 df-tms 23581 df-cncf 24147 df-limc 25136 df-dv 25137 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |