MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efiatan2 Structured version   Visualization version   GIF version

Theorem efiatan2 26267
Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
efiatan2 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))

Proof of Theorem efiatan2
StepHypRef Expression
1 ax-icn 11110 . . . . 5 i ∈ ℂ
2 atancl 26231 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ)
3 mulcl 11135 . . . . 5 ((i ∈ ℂ ∧ (arctan‘𝐴) ∈ ℂ) → (i · (arctan‘𝐴)) ∈ ℂ)
41, 2, 3sylancr 587 . . . 4 (𝐴 ∈ dom arctan → (i · (arctan‘𝐴)) ∈ ℂ)
5 efcl 15965 . . . 4 ((i · (arctan‘𝐴)) ∈ ℂ → (exp‘(i · (arctan‘𝐴))) ∈ ℂ)
64, 5syl 17 . . 3 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) ∈ ℂ)
7 ax-1cn 11109 . . . . 5 1 ∈ ℂ
8 atandm2 26227 . . . . . . 7 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
98simp1bi 1145 . . . . . 6 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
109sqcld 14049 . . . . 5 (𝐴 ∈ dom arctan → (𝐴↑2) ∈ ℂ)
11 addcl 11133 . . . . 5 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 + (𝐴↑2)) ∈ ℂ)
127, 10, 11sylancr 587 . . . 4 (𝐴 ∈ dom arctan → (1 + (𝐴↑2)) ∈ ℂ)
1312sqrtcld 15322 . . 3 (𝐴 ∈ dom arctan → (√‘(1 + (𝐴↑2))) ∈ ℂ)
1412sqsqrtd 15324 . . . . 5 (𝐴 ∈ dom arctan → ((√‘(1 + (𝐴↑2)))↑2) = (1 + (𝐴↑2)))
15 atandm4 26229 . . . . . 6 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ≠ 0))
1615simprbi 497 . . . . 5 (𝐴 ∈ dom arctan → (1 + (𝐴↑2)) ≠ 0)
1714, 16eqnetrd 3011 . . . 4 (𝐴 ∈ dom arctan → ((√‘(1 + (𝐴↑2)))↑2) ≠ 0)
18 sqne0 14028 . . . . 5 ((√‘(1 + (𝐴↑2))) ∈ ℂ → (((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔ (√‘(1 + (𝐴↑2))) ≠ 0))
1913, 18syl 17 . . . 4 (𝐴 ∈ dom arctan → (((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔ (√‘(1 + (𝐴↑2))) ≠ 0))
2017, 19mpbid 231 . . 3 (𝐴 ∈ dom arctan → (√‘(1 + (𝐴↑2))) ≠ 0)
216, 13, 20divcan4d 11937 . 2 (𝐴 ∈ dom arctan → (((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))) / (√‘(1 + (𝐴↑2)))) = (exp‘(i · (arctan‘𝐴))))
22 halfcn 12368 . . . . . . 7 (1 / 2) ∈ ℂ
2312, 16logcld 25926 . . . . . . 7 (𝐴 ∈ dom arctan → (log‘(1 + (𝐴↑2))) ∈ ℂ)
24 mulcl 11135 . . . . . . 7 (((1 / 2) ∈ ℂ ∧ (log‘(1 + (𝐴↑2))) ∈ ℂ) → ((1 / 2) · (log‘(1 + (𝐴↑2)))) ∈ ℂ)
2522, 23, 24sylancr 587 . . . . . 6 (𝐴 ∈ dom arctan → ((1 / 2) · (log‘(1 + (𝐴↑2)))) ∈ ℂ)
26 efadd 15976 . . . . . 6 (((i · (arctan‘𝐴)) ∈ ℂ ∧ ((1 / 2) · (log‘(1 + (𝐴↑2)))) ∈ ℂ) → (exp‘((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2)))))) = ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))))
274, 25, 26syl2anc 584 . . . . 5 (𝐴 ∈ dom arctan → (exp‘((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2)))))) = ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))))
28 2cn 12228 . . . . . . . . . . . 12 2 ∈ ℂ
2928a1i 11 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → 2 ∈ ℂ)
30 mulcl 11135 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
311, 9, 30sylancr 587 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
32 addcl 11133 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
337, 31, 32sylancr 587 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
348simp3bi 1147 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
3533, 34logcld 25926 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
3629, 35, 4subdid 11611 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) = ((2 · (log‘(1 + (i · 𝐴)))) − (2 · (i · (arctan‘𝐴)))))
37 atanval 26234 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3837oveq2d 7373 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
391a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → i ∈ ℂ)
4029, 39, 2mulassd 11178 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = (2 · (i · (arctan‘𝐴))))
41 halfcl 12378 . . . . . . . . . . . . . . . . . 18 (i ∈ ℂ → (i / 2) ∈ ℂ)
421, 41ax-mp 5 . . . . . . . . . . . . . . . . 17 (i / 2) ∈ ℂ
4328, 1, 42mulassi 11166 . . . . . . . . . . . . . . . 16 ((2 · i) · (i / 2)) = (2 · (i · (i / 2)))
4428, 1, 42mul12i 11350 . . . . . . . . . . . . . . . 16 (2 · (i · (i / 2))) = (i · (2 · (i / 2)))
45 2ne0 12257 . . . . . . . . . . . . . . . . . . 19 2 ≠ 0
461, 28, 45divcan2i 11898 . . . . . . . . . . . . . . . . . 18 (2 · (i / 2)) = i
4746oveq2i 7368 . . . . . . . . . . . . . . . . 17 (i · (2 · (i / 2))) = (i · i)
48 ixi 11784 . . . . . . . . . . . . . . . . 17 (i · i) = -1
4947, 48eqtri 2764 . . . . . . . . . . . . . . . 16 (i · (2 · (i / 2))) = -1
5043, 44, 493eqtri 2768 . . . . . . . . . . . . . . 15 ((2 · i) · (i / 2)) = -1
5150oveq1i 7367 . . . . . . . . . . . . . 14 (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
52 subcl 11400 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
537, 31, 52sylancr 587 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
548simp2bi 1146 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
5553, 54logcld 25926 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
5655, 35subcld 11512 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
5756mulm1d 11607 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
5851, 57eqtrid 2788 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
59 2mulicn 12376 . . . . . . . . . . . . . . 15 (2 · i) ∈ ℂ
6059a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (2 · i) ∈ ℂ)
6142a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (i / 2) ∈ ℂ)
6260, 61, 56mulassd 11178 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
6355, 35negsubdi2d 11528 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
6458, 62, 633eqtr3d 2784 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
6538, 40, 643eqtr3d 2784 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (2 · (i · (arctan‘𝐴))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
6665oveq2d 7373 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − (2 · (i · (arctan‘𝐴)))) = ((2 · (log‘(1 + (i · 𝐴)))) − ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
67 mulcl 11135 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ (log‘(1 + (i · 𝐴))) ∈ ℂ) → (2 · (log‘(1 + (i · 𝐴)))) ∈ ℂ)
6828, 35, 67sylancr 587 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (2 · (log‘(1 + (i · 𝐴)))) ∈ ℂ)
6968, 35, 55subsubd 11540 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (((2 · (log‘(1 + (i · 𝐴)))) − (log‘(1 + (i · 𝐴)))) + (log‘(1 − (i · 𝐴)))))
70352timesd 12396 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (2 · (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 + (i · 𝐴)))))
7135, 35, 70mvrladdd 11568 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − (log‘(1 + (i · 𝐴)))) = (log‘(1 + (i · 𝐴))))
7271oveq1d 7372 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (((2 · (log‘(1 + (i · 𝐴)))) − (log‘(1 + (i · 𝐴)))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))
73 atanlogadd 26264 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
74 logef 25937 . . . . . . . . . . . . 13 (((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log → (log‘(exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))
7573, 74syl 17 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (log‘(exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))
76 efadd 15976 . . . . . . . . . . . . . . 15 (((log‘(1 + (i · 𝐴))) ∈ ℂ ∧ (log‘(1 − (i · 𝐴))) ∈ ℂ) → (exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) · (exp‘(log‘(1 − (i · 𝐴))))))
7735, 55, 76syl2anc 584 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) · (exp‘(log‘(1 − (i · 𝐴))))))
78 eflog 25932 . . . . . . . . . . . . . . . 16 (((1 + (i · 𝐴)) ∈ ℂ ∧ (1 + (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
7933, 34, 78syl2anc 584 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
80 eflog 25932 . . . . . . . . . . . . . . . 16 (((1 − (i · 𝐴)) ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
8153, 54, 80syl2anc 584 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
8279, 81oveq12d 7375 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → ((exp‘(log‘(1 + (i · 𝐴)))) · (exp‘(log‘(1 − (i · 𝐴))))) = ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
83 sq1 14099 . . . . . . . . . . . . . . . . 17 (1↑2) = 1
8483a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom arctan → (1↑2) = 1)
85 sqmul 14024 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
861, 9, 85sylancr 587 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
87 i2 14106 . . . . . . . . . . . . . . . . . . 19 (i↑2) = -1
8887oveq1i 7367 . . . . . . . . . . . . . . . . . 18 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
8910mulm1d 11607 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ dom arctan → (-1 · (𝐴↑2)) = -(𝐴↑2))
9088, 89eqtrid 2788 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → ((i↑2) · (𝐴↑2)) = -(𝐴↑2))
9186, 90eqtrd 2776 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom arctan → ((i · 𝐴)↑2) = -(𝐴↑2))
9284, 91oveq12d 7375 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → ((1↑2) − ((i · 𝐴)↑2)) = (1 − -(𝐴↑2)))
93 subsq 14114 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → ((1↑2) − ((i · 𝐴)↑2)) = ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
947, 31, 93sylancr 587 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → ((1↑2) − ((i · 𝐴)↑2)) = ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
95 subneg 11450 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − -(𝐴↑2)) = (1 + (𝐴↑2)))
967, 10, 95sylancr 587 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (1 − -(𝐴↑2)) = (1 + (𝐴↑2)))
9792, 94, 963eqtr3d 2784 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) = (1 + (𝐴↑2)))
9877, 82, 973eqtrd 2780 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = (1 + (𝐴↑2)))
9998fveq2d 6846 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (log‘(exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))) = (log‘(1 + (𝐴↑2))))
10075, 99eqtr3d 2778 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = (log‘(1 + (𝐴↑2))))
10169, 72, 1003eqtrd 2780 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (log‘(1 + (𝐴↑2))))
10236, 66, 1013eqtrd 2780 . . . . . . . . 9 (𝐴 ∈ dom arctan → (2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) = (log‘(1 + (𝐴↑2))))
103102oveq1d 7372 . . . . . . . 8 (𝐴 ∈ dom arctan → ((2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) / 2) = ((log‘(1 + (𝐴↑2))) / 2))
10435, 4subcld 11512 . . . . . . . . 9 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))) ∈ ℂ)
10545a1i 11 . . . . . . . . 9 (𝐴 ∈ dom arctan → 2 ≠ 0)
106104, 29, 105divcan3d 11936 . . . . . . . 8 (𝐴 ∈ dom arctan → ((2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) / 2) = ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))))
10723, 29, 105divrec2d 11935 . . . . . . . 8 (𝐴 ∈ dom arctan → ((log‘(1 + (𝐴↑2))) / 2) = ((1 / 2) · (log‘(1 + (𝐴↑2)))))
108103, 106, 1073eqtr3d 2784 . . . . . . 7 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))) = ((1 / 2) · (log‘(1 + (𝐴↑2)))))
10935, 4, 25subaddd 11530 . . . . . . 7 (𝐴 ∈ dom arctan → (((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))) = ((1 / 2) · (log‘(1 + (𝐴↑2)))) ↔ ((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2))))) = (log‘(1 + (i · 𝐴)))))
110108, 109mpbid 231 . . . . . 6 (𝐴 ∈ dom arctan → ((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2))))) = (log‘(1 + (i · 𝐴))))
111110fveq2d 6846 . . . . 5 (𝐴 ∈ dom arctan → (exp‘((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2)))))) = (exp‘(log‘(1 + (i · 𝐴)))))
11227, 111eqtr3d 2778 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))) = (exp‘(log‘(1 + (i · 𝐴)))))
11322a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → (1 / 2) ∈ ℂ)
11412, 16, 113cxpefd 26067 . . . . . 6 (𝐴 ∈ dom arctan → ((1 + (𝐴↑2))↑𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘(1 + (𝐴↑2))))))
115 cxpsqrt 26058 . . . . . . 7 ((1 + (𝐴↑2)) ∈ ℂ → ((1 + (𝐴↑2))↑𝑐(1 / 2)) = (√‘(1 + (𝐴↑2))))
11612, 115syl 17 . . . . . 6 (𝐴 ∈ dom arctan → ((1 + (𝐴↑2))↑𝑐(1 / 2)) = (√‘(1 + (𝐴↑2))))
117114, 116eqtr3d 2778 . . . . 5 (𝐴 ∈ dom arctan → (exp‘((1 / 2) · (log‘(1 + (𝐴↑2))))) = (√‘(1 + (𝐴↑2))))
118117oveq2d 7373 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))) = ((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))))
119112, 118, 793eqtr3d 2784 . . 3 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))) = (1 + (i · 𝐴)))
120119oveq1d 7372 . 2 (𝐴 ∈ dom arctan → (((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))) / (√‘(1 + (𝐴↑2)))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
12121, 120eqtr3d 2778 1 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  wne 2943  dom cdm 5633  ran crn 5634  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052  ici 11053   + caddc 11054   · cmul 11056  cmin 11385  -cneg 11386   / cdiv 11812  2c2 12208  cexp 13967  csqrt 15118  expce 15944  logclog 25910  𝑐ccxp 25911  arctancatan 26214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913  df-atan 26217
This theorem is referenced by:  cosatan  26271
  Copyright terms: Public domain W3C validator