MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efiatan2 Structured version   Visualization version   GIF version

Theorem efiatan2 26834
Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
efiatan2 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))

Proof of Theorem efiatan2
StepHypRef Expression
1 ax-icn 11134 . . . . 5 i ∈ ℂ
2 atancl 26798 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ)
3 mulcl 11159 . . . . 5 ((i ∈ ℂ ∧ (arctan‘𝐴) ∈ ℂ) → (i · (arctan‘𝐴)) ∈ ℂ)
41, 2, 3sylancr 587 . . . 4 (𝐴 ∈ dom arctan → (i · (arctan‘𝐴)) ∈ ℂ)
5 efcl 16055 . . . 4 ((i · (arctan‘𝐴)) ∈ ℂ → (exp‘(i · (arctan‘𝐴))) ∈ ℂ)
64, 5syl 17 . . 3 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) ∈ ℂ)
7 ax-1cn 11133 . . . . 5 1 ∈ ℂ
8 atandm2 26794 . . . . . . 7 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
98simp1bi 1145 . . . . . 6 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
109sqcld 14116 . . . . 5 (𝐴 ∈ dom arctan → (𝐴↑2) ∈ ℂ)
11 addcl 11157 . . . . 5 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 + (𝐴↑2)) ∈ ℂ)
127, 10, 11sylancr 587 . . . 4 (𝐴 ∈ dom arctan → (1 + (𝐴↑2)) ∈ ℂ)
1312sqrtcld 15413 . . 3 (𝐴 ∈ dom arctan → (√‘(1 + (𝐴↑2))) ∈ ℂ)
1412sqsqrtd 15415 . . . . 5 (𝐴 ∈ dom arctan → ((√‘(1 + (𝐴↑2)))↑2) = (1 + (𝐴↑2)))
15 atandm4 26796 . . . . . 6 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ≠ 0))
1615simprbi 496 . . . . 5 (𝐴 ∈ dom arctan → (1 + (𝐴↑2)) ≠ 0)
1714, 16eqnetrd 2993 . . . 4 (𝐴 ∈ dom arctan → ((√‘(1 + (𝐴↑2)))↑2) ≠ 0)
18 sqne0 14095 . . . . 5 ((√‘(1 + (𝐴↑2))) ∈ ℂ → (((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔ (√‘(1 + (𝐴↑2))) ≠ 0))
1913, 18syl 17 . . . 4 (𝐴 ∈ dom arctan → (((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔ (√‘(1 + (𝐴↑2))) ≠ 0))
2017, 19mpbid 232 . . 3 (𝐴 ∈ dom arctan → (√‘(1 + (𝐴↑2))) ≠ 0)
216, 13, 20divcan4d 11971 . 2 (𝐴 ∈ dom arctan → (((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))) / (√‘(1 + (𝐴↑2)))) = (exp‘(i · (arctan‘𝐴))))
22 halfcn 12403 . . . . . . 7 (1 / 2) ∈ ℂ
2312, 16logcld 26486 . . . . . . 7 (𝐴 ∈ dom arctan → (log‘(1 + (𝐴↑2))) ∈ ℂ)
24 mulcl 11159 . . . . . . 7 (((1 / 2) ∈ ℂ ∧ (log‘(1 + (𝐴↑2))) ∈ ℂ) → ((1 / 2) · (log‘(1 + (𝐴↑2)))) ∈ ℂ)
2522, 23, 24sylancr 587 . . . . . 6 (𝐴 ∈ dom arctan → ((1 / 2) · (log‘(1 + (𝐴↑2)))) ∈ ℂ)
26 efadd 16067 . . . . . 6 (((i · (arctan‘𝐴)) ∈ ℂ ∧ ((1 / 2) · (log‘(1 + (𝐴↑2)))) ∈ ℂ) → (exp‘((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2)))))) = ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))))
274, 25, 26syl2anc 584 . . . . 5 (𝐴 ∈ dom arctan → (exp‘((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2)))))) = ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))))
28 2cn 12268 . . . . . . . . . . . 12 2 ∈ ℂ
2928a1i 11 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → 2 ∈ ℂ)
30 mulcl 11159 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
311, 9, 30sylancr 587 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
32 addcl 11157 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
337, 31, 32sylancr 587 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
348simp3bi 1147 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
3533, 34logcld 26486 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
3629, 35, 4subdid 11641 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) = ((2 · (log‘(1 + (i · 𝐴)))) − (2 · (i · (arctan‘𝐴)))))
37 atanval 26801 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3837oveq2d 7406 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
391a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → i ∈ ℂ)
4029, 39, 2mulassd 11204 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = (2 · (i · (arctan‘𝐴))))
41 halfcl 12415 . . . . . . . . . . . . . . . . . 18 (i ∈ ℂ → (i / 2) ∈ ℂ)
421, 41ax-mp 5 . . . . . . . . . . . . . . . . 17 (i / 2) ∈ ℂ
4328, 1, 42mulassi 11192 . . . . . . . . . . . . . . . 16 ((2 · i) · (i / 2)) = (2 · (i · (i / 2)))
4428, 1, 42mul12i 11376 . . . . . . . . . . . . . . . 16 (2 · (i · (i / 2))) = (i · (2 · (i / 2)))
45 2ne0 12297 . . . . . . . . . . . . . . . . . . 19 2 ≠ 0
461, 28, 45divcan2i 11932 . . . . . . . . . . . . . . . . . 18 (2 · (i / 2)) = i
4746oveq2i 7401 . . . . . . . . . . . . . . . . 17 (i · (2 · (i / 2))) = (i · i)
48 ixi 11814 . . . . . . . . . . . . . . . . 17 (i · i) = -1
4947, 48eqtri 2753 . . . . . . . . . . . . . . . 16 (i · (2 · (i / 2))) = -1
5043, 44, 493eqtri 2757 . . . . . . . . . . . . . . 15 ((2 · i) · (i / 2)) = -1
5150oveq1i 7400 . . . . . . . . . . . . . 14 (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
52 subcl 11427 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
537, 31, 52sylancr 587 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
548simp2bi 1146 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
5553, 54logcld 26486 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
5655, 35subcld 11540 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
5756mulm1d 11637 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
5851, 57eqtrid 2777 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
59 2mulicn 12413 . . . . . . . . . . . . . . 15 (2 · i) ∈ ℂ
6059a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (2 · i) ∈ ℂ)
6142a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (i / 2) ∈ ℂ)
6260, 61, 56mulassd 11204 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
6355, 35negsubdi2d 11556 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
6458, 62, 633eqtr3d 2773 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
6538, 40, 643eqtr3d 2773 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (2 · (i · (arctan‘𝐴))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
6665oveq2d 7406 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − (2 · (i · (arctan‘𝐴)))) = ((2 · (log‘(1 + (i · 𝐴)))) − ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
67 mulcl 11159 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ (log‘(1 + (i · 𝐴))) ∈ ℂ) → (2 · (log‘(1 + (i · 𝐴)))) ∈ ℂ)
6828, 35, 67sylancr 587 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (2 · (log‘(1 + (i · 𝐴)))) ∈ ℂ)
6968, 35, 55subsubd 11568 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (((2 · (log‘(1 + (i · 𝐴)))) − (log‘(1 + (i · 𝐴)))) + (log‘(1 − (i · 𝐴)))))
70352timesd 12432 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (2 · (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 + (i · 𝐴)))))
7135, 35, 70mvrladdd 11598 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − (log‘(1 + (i · 𝐴)))) = (log‘(1 + (i · 𝐴))))
7271oveq1d 7405 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (((2 · (log‘(1 + (i · 𝐴)))) − (log‘(1 + (i · 𝐴)))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))
73 atanlogadd 26831 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
74 logef 26497 . . . . . . . . . . . . 13 (((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log → (log‘(exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))
7573, 74syl 17 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (log‘(exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))
76 efadd 16067 . . . . . . . . . . . . . . 15 (((log‘(1 + (i · 𝐴))) ∈ ℂ ∧ (log‘(1 − (i · 𝐴))) ∈ ℂ) → (exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) · (exp‘(log‘(1 − (i · 𝐴))))))
7735, 55, 76syl2anc 584 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) · (exp‘(log‘(1 − (i · 𝐴))))))
78 eflog 26492 . . . . . . . . . . . . . . . 16 (((1 + (i · 𝐴)) ∈ ℂ ∧ (1 + (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
7933, 34, 78syl2anc 584 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
80 eflog 26492 . . . . . . . . . . . . . . . 16 (((1 − (i · 𝐴)) ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
8153, 54, 80syl2anc 584 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
8279, 81oveq12d 7408 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → ((exp‘(log‘(1 + (i · 𝐴)))) · (exp‘(log‘(1 − (i · 𝐴))))) = ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
83 sq1 14167 . . . . . . . . . . . . . . . . 17 (1↑2) = 1
8483a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom arctan → (1↑2) = 1)
85 sqmul 14091 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
861, 9, 85sylancr 587 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
87 i2 14174 . . . . . . . . . . . . . . . . . . 19 (i↑2) = -1
8887oveq1i 7400 . . . . . . . . . . . . . . . . . 18 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
8910mulm1d 11637 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ dom arctan → (-1 · (𝐴↑2)) = -(𝐴↑2))
9088, 89eqtrid 2777 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → ((i↑2) · (𝐴↑2)) = -(𝐴↑2))
9186, 90eqtrd 2765 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom arctan → ((i · 𝐴)↑2) = -(𝐴↑2))
9284, 91oveq12d 7408 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → ((1↑2) − ((i · 𝐴)↑2)) = (1 − -(𝐴↑2)))
93 subsq 14182 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → ((1↑2) − ((i · 𝐴)↑2)) = ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
947, 31, 93sylancr 587 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → ((1↑2) − ((i · 𝐴)↑2)) = ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
95 subneg 11478 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − -(𝐴↑2)) = (1 + (𝐴↑2)))
967, 10, 95sylancr 587 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (1 − -(𝐴↑2)) = (1 + (𝐴↑2)))
9792, 94, 963eqtr3d 2773 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) = (1 + (𝐴↑2)))
9877, 82, 973eqtrd 2769 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = (1 + (𝐴↑2)))
9998fveq2d 6865 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (log‘(exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))) = (log‘(1 + (𝐴↑2))))
10075, 99eqtr3d 2767 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = (log‘(1 + (𝐴↑2))))
10169, 72, 1003eqtrd 2769 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (log‘(1 + (𝐴↑2))))
10236, 66, 1013eqtrd 2769 . . . . . . . . 9 (𝐴 ∈ dom arctan → (2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) = (log‘(1 + (𝐴↑2))))
103102oveq1d 7405 . . . . . . . 8 (𝐴 ∈ dom arctan → ((2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) / 2) = ((log‘(1 + (𝐴↑2))) / 2))
10435, 4subcld 11540 . . . . . . . . 9 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))) ∈ ℂ)
10545a1i 11 . . . . . . . . 9 (𝐴 ∈ dom arctan → 2 ≠ 0)
106104, 29, 105divcan3d 11970 . . . . . . . 8 (𝐴 ∈ dom arctan → ((2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) / 2) = ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))))
10723, 29, 105divrec2d 11969 . . . . . . . 8 (𝐴 ∈ dom arctan → ((log‘(1 + (𝐴↑2))) / 2) = ((1 / 2) · (log‘(1 + (𝐴↑2)))))
108103, 106, 1073eqtr3d 2773 . . . . . . 7 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))) = ((1 / 2) · (log‘(1 + (𝐴↑2)))))
10935, 4, 25subaddd 11558 . . . . . . 7 (𝐴 ∈ dom arctan → (((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))) = ((1 / 2) · (log‘(1 + (𝐴↑2)))) ↔ ((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2))))) = (log‘(1 + (i · 𝐴)))))
110108, 109mpbid 232 . . . . . 6 (𝐴 ∈ dom arctan → ((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2))))) = (log‘(1 + (i · 𝐴))))
111110fveq2d 6865 . . . . 5 (𝐴 ∈ dom arctan → (exp‘((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2)))))) = (exp‘(log‘(1 + (i · 𝐴)))))
11227, 111eqtr3d 2767 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))) = (exp‘(log‘(1 + (i · 𝐴)))))
11322a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → (1 / 2) ∈ ℂ)
11412, 16, 113cxpefd 26628 . . . . . 6 (𝐴 ∈ dom arctan → ((1 + (𝐴↑2))↑𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘(1 + (𝐴↑2))))))
115 cxpsqrt 26619 . . . . . . 7 ((1 + (𝐴↑2)) ∈ ℂ → ((1 + (𝐴↑2))↑𝑐(1 / 2)) = (√‘(1 + (𝐴↑2))))
11612, 115syl 17 . . . . . 6 (𝐴 ∈ dom arctan → ((1 + (𝐴↑2))↑𝑐(1 / 2)) = (√‘(1 + (𝐴↑2))))
117114, 116eqtr3d 2767 . . . . 5 (𝐴 ∈ dom arctan → (exp‘((1 / 2) · (log‘(1 + (𝐴↑2))))) = (√‘(1 + (𝐴↑2))))
118117oveq2d 7406 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))) = ((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))))
119112, 118, 793eqtr3d 2773 . . 3 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))) = (1 + (i · 𝐴)))
120119oveq1d 7405 . 2 (𝐴 ∈ dom arctan → (((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))) / (√‘(1 + (𝐴↑2)))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
12121, 120eqtr3d 2767 1 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2926  dom cdm 5641  ran crn 5642  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076  ici 11077   + caddc 11078   · cmul 11080  cmin 11412  -cneg 11413   / cdiv 11842  2c2 12248  cexp 14033  csqrt 15206  expce 16034  logclog 26470  𝑐ccxp 26471  arctancatan 26781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-cxp 26473  df-atan 26784
This theorem is referenced by:  cosatan  26838
  Copyright terms: Public domain W3C validator