MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efiatan2 Structured version   Visualization version   GIF version

Theorem efiatan2 26960
Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
efiatan2 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))

Proof of Theorem efiatan2
StepHypRef Expression
1 ax-icn 11214 . . . . 5 i ∈ ℂ
2 atancl 26924 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ)
3 mulcl 11239 . . . . 5 ((i ∈ ℂ ∧ (arctan‘𝐴) ∈ ℂ) → (i · (arctan‘𝐴)) ∈ ℂ)
41, 2, 3sylancr 587 . . . 4 (𝐴 ∈ dom arctan → (i · (arctan‘𝐴)) ∈ ℂ)
5 efcl 16118 . . . 4 ((i · (arctan‘𝐴)) ∈ ℂ → (exp‘(i · (arctan‘𝐴))) ∈ ℂ)
64, 5syl 17 . . 3 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) ∈ ℂ)
7 ax-1cn 11213 . . . . 5 1 ∈ ℂ
8 atandm2 26920 . . . . . . 7 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
98simp1bi 1146 . . . . . 6 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
109sqcld 14184 . . . . 5 (𝐴 ∈ dom arctan → (𝐴↑2) ∈ ℂ)
11 addcl 11237 . . . . 5 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 + (𝐴↑2)) ∈ ℂ)
127, 10, 11sylancr 587 . . . 4 (𝐴 ∈ dom arctan → (1 + (𝐴↑2)) ∈ ℂ)
1312sqrtcld 15476 . . 3 (𝐴 ∈ dom arctan → (√‘(1 + (𝐴↑2))) ∈ ℂ)
1412sqsqrtd 15478 . . . . 5 (𝐴 ∈ dom arctan → ((√‘(1 + (𝐴↑2)))↑2) = (1 + (𝐴↑2)))
15 atandm4 26922 . . . . . 6 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ≠ 0))
1615simprbi 496 . . . . 5 (𝐴 ∈ dom arctan → (1 + (𝐴↑2)) ≠ 0)
1714, 16eqnetrd 3008 . . . 4 (𝐴 ∈ dom arctan → ((√‘(1 + (𝐴↑2)))↑2) ≠ 0)
18 sqne0 14163 . . . . 5 ((√‘(1 + (𝐴↑2))) ∈ ℂ → (((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔ (√‘(1 + (𝐴↑2))) ≠ 0))
1913, 18syl 17 . . . 4 (𝐴 ∈ dom arctan → (((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔ (√‘(1 + (𝐴↑2))) ≠ 0))
2017, 19mpbid 232 . . 3 (𝐴 ∈ dom arctan → (√‘(1 + (𝐴↑2))) ≠ 0)
216, 13, 20divcan4d 12049 . 2 (𝐴 ∈ dom arctan → (((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))) / (√‘(1 + (𝐴↑2)))) = (exp‘(i · (arctan‘𝐴))))
22 halfcn 12481 . . . . . . 7 (1 / 2) ∈ ℂ
2312, 16logcld 26612 . . . . . . 7 (𝐴 ∈ dom arctan → (log‘(1 + (𝐴↑2))) ∈ ℂ)
24 mulcl 11239 . . . . . . 7 (((1 / 2) ∈ ℂ ∧ (log‘(1 + (𝐴↑2))) ∈ ℂ) → ((1 / 2) · (log‘(1 + (𝐴↑2)))) ∈ ℂ)
2522, 23, 24sylancr 587 . . . . . 6 (𝐴 ∈ dom arctan → ((1 / 2) · (log‘(1 + (𝐴↑2)))) ∈ ℂ)
26 efadd 16130 . . . . . 6 (((i · (arctan‘𝐴)) ∈ ℂ ∧ ((1 / 2) · (log‘(1 + (𝐴↑2)))) ∈ ℂ) → (exp‘((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2)))))) = ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))))
274, 25, 26syl2anc 584 . . . . 5 (𝐴 ∈ dom arctan → (exp‘((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2)))))) = ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))))
28 2cn 12341 . . . . . . . . . . . 12 2 ∈ ℂ
2928a1i 11 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → 2 ∈ ℂ)
30 mulcl 11239 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
311, 9, 30sylancr 587 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
32 addcl 11237 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
337, 31, 32sylancr 587 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
348simp3bi 1148 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
3533, 34logcld 26612 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
3629, 35, 4subdid 11719 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) = ((2 · (log‘(1 + (i · 𝐴)))) − (2 · (i · (arctan‘𝐴)))))
37 atanval 26927 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3837oveq2d 7447 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
391a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → i ∈ ℂ)
4029, 39, 2mulassd 11284 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = (2 · (i · (arctan‘𝐴))))
41 halfcl 12491 . . . . . . . . . . . . . . . . . 18 (i ∈ ℂ → (i / 2) ∈ ℂ)
421, 41ax-mp 5 . . . . . . . . . . . . . . . . 17 (i / 2) ∈ ℂ
4328, 1, 42mulassi 11272 . . . . . . . . . . . . . . . 16 ((2 · i) · (i / 2)) = (2 · (i · (i / 2)))
4428, 1, 42mul12i 11456 . . . . . . . . . . . . . . . 16 (2 · (i · (i / 2))) = (i · (2 · (i / 2)))
45 2ne0 12370 . . . . . . . . . . . . . . . . . . 19 2 ≠ 0
461, 28, 45divcan2i 12010 . . . . . . . . . . . . . . . . . 18 (2 · (i / 2)) = i
4746oveq2i 7442 . . . . . . . . . . . . . . . . 17 (i · (2 · (i / 2))) = (i · i)
48 ixi 11892 . . . . . . . . . . . . . . . . 17 (i · i) = -1
4947, 48eqtri 2765 . . . . . . . . . . . . . . . 16 (i · (2 · (i / 2))) = -1
5043, 44, 493eqtri 2769 . . . . . . . . . . . . . . 15 ((2 · i) · (i / 2)) = -1
5150oveq1i 7441 . . . . . . . . . . . . . 14 (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
52 subcl 11507 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
537, 31, 52sylancr 587 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
548simp2bi 1147 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
5553, 54logcld 26612 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
5655, 35subcld 11620 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
5756mulm1d 11715 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
5851, 57eqtrid 2789 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
59 2mulicn 12489 . . . . . . . . . . . . . . 15 (2 · i) ∈ ℂ
6059a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (2 · i) ∈ ℂ)
6142a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (i / 2) ∈ ℂ)
6260, 61, 56mulassd 11284 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
6355, 35negsubdi2d 11636 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
6458, 62, 633eqtr3d 2785 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
6538, 40, 643eqtr3d 2785 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (2 · (i · (arctan‘𝐴))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
6665oveq2d 7447 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − (2 · (i · (arctan‘𝐴)))) = ((2 · (log‘(1 + (i · 𝐴)))) − ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
67 mulcl 11239 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ (log‘(1 + (i · 𝐴))) ∈ ℂ) → (2 · (log‘(1 + (i · 𝐴)))) ∈ ℂ)
6828, 35, 67sylancr 587 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (2 · (log‘(1 + (i · 𝐴)))) ∈ ℂ)
6968, 35, 55subsubd 11648 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (((2 · (log‘(1 + (i · 𝐴)))) − (log‘(1 + (i · 𝐴)))) + (log‘(1 − (i · 𝐴)))))
70352timesd 12509 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (2 · (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 + (i · 𝐴)))))
7135, 35, 70mvrladdd 11676 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − (log‘(1 + (i · 𝐴)))) = (log‘(1 + (i · 𝐴))))
7271oveq1d 7446 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (((2 · (log‘(1 + (i · 𝐴)))) − (log‘(1 + (i · 𝐴)))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))
73 atanlogadd 26957 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
74 logef 26623 . . . . . . . . . . . . 13 (((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log → (log‘(exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))
7573, 74syl 17 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (log‘(exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))
76 efadd 16130 . . . . . . . . . . . . . . 15 (((log‘(1 + (i · 𝐴))) ∈ ℂ ∧ (log‘(1 − (i · 𝐴))) ∈ ℂ) → (exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) · (exp‘(log‘(1 − (i · 𝐴))))))
7735, 55, 76syl2anc 584 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) · (exp‘(log‘(1 − (i · 𝐴))))))
78 eflog 26618 . . . . . . . . . . . . . . . 16 (((1 + (i · 𝐴)) ∈ ℂ ∧ (1 + (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
7933, 34, 78syl2anc 584 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
80 eflog 26618 . . . . . . . . . . . . . . . 16 (((1 − (i · 𝐴)) ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
8153, 54, 80syl2anc 584 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
8279, 81oveq12d 7449 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → ((exp‘(log‘(1 + (i · 𝐴)))) · (exp‘(log‘(1 − (i · 𝐴))))) = ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
83 sq1 14234 . . . . . . . . . . . . . . . . 17 (1↑2) = 1
8483a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom arctan → (1↑2) = 1)
85 sqmul 14159 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
861, 9, 85sylancr 587 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
87 i2 14241 . . . . . . . . . . . . . . . . . . 19 (i↑2) = -1
8887oveq1i 7441 . . . . . . . . . . . . . . . . . 18 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
8910mulm1d 11715 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ dom arctan → (-1 · (𝐴↑2)) = -(𝐴↑2))
9088, 89eqtrid 2789 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → ((i↑2) · (𝐴↑2)) = -(𝐴↑2))
9186, 90eqtrd 2777 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom arctan → ((i · 𝐴)↑2) = -(𝐴↑2))
9284, 91oveq12d 7449 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → ((1↑2) − ((i · 𝐴)↑2)) = (1 − -(𝐴↑2)))
93 subsq 14249 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → ((1↑2) − ((i · 𝐴)↑2)) = ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
947, 31, 93sylancr 587 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → ((1↑2) − ((i · 𝐴)↑2)) = ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
95 subneg 11558 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − -(𝐴↑2)) = (1 + (𝐴↑2)))
967, 10, 95sylancr 587 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (1 − -(𝐴↑2)) = (1 + (𝐴↑2)))
9792, 94, 963eqtr3d 2785 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) = (1 + (𝐴↑2)))
9877, 82, 973eqtrd 2781 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = (1 + (𝐴↑2)))
9998fveq2d 6910 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (log‘(exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))) = (log‘(1 + (𝐴↑2))))
10075, 99eqtr3d 2779 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = (log‘(1 + (𝐴↑2))))
10169, 72, 1003eqtrd 2781 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (log‘(1 + (𝐴↑2))))
10236, 66, 1013eqtrd 2781 . . . . . . . . 9 (𝐴 ∈ dom arctan → (2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) = (log‘(1 + (𝐴↑2))))
103102oveq1d 7446 . . . . . . . 8 (𝐴 ∈ dom arctan → ((2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) / 2) = ((log‘(1 + (𝐴↑2))) / 2))
10435, 4subcld 11620 . . . . . . . . 9 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))) ∈ ℂ)
10545a1i 11 . . . . . . . . 9 (𝐴 ∈ dom arctan → 2 ≠ 0)
106104, 29, 105divcan3d 12048 . . . . . . . 8 (𝐴 ∈ dom arctan → ((2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) / 2) = ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))))
10723, 29, 105divrec2d 12047 . . . . . . . 8 (𝐴 ∈ dom arctan → ((log‘(1 + (𝐴↑2))) / 2) = ((1 / 2) · (log‘(1 + (𝐴↑2)))))
108103, 106, 1073eqtr3d 2785 . . . . . . 7 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))) = ((1 / 2) · (log‘(1 + (𝐴↑2)))))
10935, 4, 25subaddd 11638 . . . . . . 7 (𝐴 ∈ dom arctan → (((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))) = ((1 / 2) · (log‘(1 + (𝐴↑2)))) ↔ ((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2))))) = (log‘(1 + (i · 𝐴)))))
110108, 109mpbid 232 . . . . . 6 (𝐴 ∈ dom arctan → ((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2))))) = (log‘(1 + (i · 𝐴))))
111110fveq2d 6910 . . . . 5 (𝐴 ∈ dom arctan → (exp‘((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2)))))) = (exp‘(log‘(1 + (i · 𝐴)))))
11227, 111eqtr3d 2779 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))) = (exp‘(log‘(1 + (i · 𝐴)))))
11322a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → (1 / 2) ∈ ℂ)
11412, 16, 113cxpefd 26754 . . . . . 6 (𝐴 ∈ dom arctan → ((1 + (𝐴↑2))↑𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘(1 + (𝐴↑2))))))
115 cxpsqrt 26745 . . . . . . 7 ((1 + (𝐴↑2)) ∈ ℂ → ((1 + (𝐴↑2))↑𝑐(1 / 2)) = (√‘(1 + (𝐴↑2))))
11612, 115syl 17 . . . . . 6 (𝐴 ∈ dom arctan → ((1 + (𝐴↑2))↑𝑐(1 / 2)) = (√‘(1 + (𝐴↑2))))
117114, 116eqtr3d 2779 . . . . 5 (𝐴 ∈ dom arctan → (exp‘((1 / 2) · (log‘(1 + (𝐴↑2))))) = (√‘(1 + (𝐴↑2))))
118117oveq2d 7447 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))) = ((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))))
119112, 118, 793eqtr3d 2785 . . 3 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))) = (1 + (i · 𝐴)))
120119oveq1d 7446 . 2 (𝐴 ∈ dom arctan → (((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))) / (√‘(1 + (𝐴↑2)))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
12121, 120eqtr3d 2779 1 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wne 2940  dom cdm 5685  ran crn 5686  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156  ici 11157   + caddc 11158   · cmul 11160  cmin 11492  -cneg 11493   / cdiv 11920  2c2 12321  cexp 14102  csqrt 15272  expce 16097  logclog 26596  𝑐ccxp 26597  arctancatan 26907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599  df-atan 26910
This theorem is referenced by:  cosatan  26964
  Copyright terms: Public domain W3C validator