MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efiatan2 Structured version   Visualization version   GIF version

Theorem efiatan2 25657
Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
efiatan2 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))

Proof of Theorem efiatan2
StepHypRef Expression
1 ax-icn 10676 . . . . 5 i ∈ ℂ
2 atancl 25621 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ)
3 mulcl 10701 . . . . 5 ((i ∈ ℂ ∧ (arctan‘𝐴) ∈ ℂ) → (i · (arctan‘𝐴)) ∈ ℂ)
41, 2, 3sylancr 590 . . . 4 (𝐴 ∈ dom arctan → (i · (arctan‘𝐴)) ∈ ℂ)
5 efcl 15530 . . . 4 ((i · (arctan‘𝐴)) ∈ ℂ → (exp‘(i · (arctan‘𝐴))) ∈ ℂ)
64, 5syl 17 . . 3 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) ∈ ℂ)
7 ax-1cn 10675 . . . . 5 1 ∈ ℂ
8 atandm2 25617 . . . . . . 7 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
98simp1bi 1146 . . . . . 6 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
109sqcld 13602 . . . . 5 (𝐴 ∈ dom arctan → (𝐴↑2) ∈ ℂ)
11 addcl 10699 . . . . 5 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 + (𝐴↑2)) ∈ ℂ)
127, 10, 11sylancr 590 . . . 4 (𝐴 ∈ dom arctan → (1 + (𝐴↑2)) ∈ ℂ)
1312sqrtcld 14889 . . 3 (𝐴 ∈ dom arctan → (√‘(1 + (𝐴↑2))) ∈ ℂ)
1412sqsqrtd 14891 . . . . 5 (𝐴 ∈ dom arctan → ((√‘(1 + (𝐴↑2)))↑2) = (1 + (𝐴↑2)))
15 atandm4 25619 . . . . . 6 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ≠ 0))
1615simprbi 500 . . . . 5 (𝐴 ∈ dom arctan → (1 + (𝐴↑2)) ≠ 0)
1714, 16eqnetrd 3001 . . . 4 (𝐴 ∈ dom arctan → ((√‘(1 + (𝐴↑2)))↑2) ≠ 0)
18 sqne0 13583 . . . . 5 ((√‘(1 + (𝐴↑2))) ∈ ℂ → (((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔ (√‘(1 + (𝐴↑2))) ≠ 0))
1913, 18syl 17 . . . 4 (𝐴 ∈ dom arctan → (((√‘(1 + (𝐴↑2)))↑2) ≠ 0 ↔ (√‘(1 + (𝐴↑2))) ≠ 0))
2017, 19mpbid 235 . . 3 (𝐴 ∈ dom arctan → (√‘(1 + (𝐴↑2))) ≠ 0)
216, 13, 20divcan4d 11502 . 2 (𝐴 ∈ dom arctan → (((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))) / (√‘(1 + (𝐴↑2)))) = (exp‘(i · (arctan‘𝐴))))
22 halfcn 11933 . . . . . . 7 (1 / 2) ∈ ℂ
2312, 16logcld 25316 . . . . . . 7 (𝐴 ∈ dom arctan → (log‘(1 + (𝐴↑2))) ∈ ℂ)
24 mulcl 10701 . . . . . . 7 (((1 / 2) ∈ ℂ ∧ (log‘(1 + (𝐴↑2))) ∈ ℂ) → ((1 / 2) · (log‘(1 + (𝐴↑2)))) ∈ ℂ)
2522, 23, 24sylancr 590 . . . . . 6 (𝐴 ∈ dom arctan → ((1 / 2) · (log‘(1 + (𝐴↑2)))) ∈ ℂ)
26 efadd 15541 . . . . . 6 (((i · (arctan‘𝐴)) ∈ ℂ ∧ ((1 / 2) · (log‘(1 + (𝐴↑2)))) ∈ ℂ) → (exp‘((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2)))))) = ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))))
274, 25, 26syl2anc 587 . . . . 5 (𝐴 ∈ dom arctan → (exp‘((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2)))))) = ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))))
28 2cn 11793 . . . . . . . . . . . 12 2 ∈ ℂ
2928a1i 11 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → 2 ∈ ℂ)
30 mulcl 10701 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
311, 9, 30sylancr 590 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
32 addcl 10699 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
337, 31, 32sylancr 590 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
348simp3bi 1148 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
3533, 34logcld 25316 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
3629, 35, 4subdid 11176 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) = ((2 · (log‘(1 + (i · 𝐴)))) − (2 · (i · (arctan‘𝐴)))))
37 atanval 25624 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3837oveq2d 7188 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
391a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → i ∈ ℂ)
4029, 39, 2mulassd 10744 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = (2 · (i · (arctan‘𝐴))))
41 halfcl 11943 . . . . . . . . . . . . . . . . . 18 (i ∈ ℂ → (i / 2) ∈ ℂ)
421, 41ax-mp 5 . . . . . . . . . . . . . . . . 17 (i / 2) ∈ ℂ
4328, 1, 42mulassi 10732 . . . . . . . . . . . . . . . 16 ((2 · i) · (i / 2)) = (2 · (i · (i / 2)))
4428, 1, 42mul12i 10915 . . . . . . . . . . . . . . . 16 (2 · (i · (i / 2))) = (i · (2 · (i / 2)))
45 2ne0 11822 . . . . . . . . . . . . . . . . . . 19 2 ≠ 0
461, 28, 45divcan2i 11463 . . . . . . . . . . . . . . . . . 18 (2 · (i / 2)) = i
4746oveq2i 7183 . . . . . . . . . . . . . . . . 17 (i · (2 · (i / 2))) = (i · i)
48 ixi 11349 . . . . . . . . . . . . . . . . 17 (i · i) = -1
4947, 48eqtri 2761 . . . . . . . . . . . . . . . 16 (i · (2 · (i / 2))) = -1
5043, 44, 493eqtri 2765 . . . . . . . . . . . . . . 15 ((2 · i) · (i / 2)) = -1
5150oveq1i 7182 . . . . . . . . . . . . . 14 (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
52 subcl 10965 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
537, 31, 52sylancr 590 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
548simp2bi 1147 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
5553, 54logcld 25316 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
5655, 35subcld 11077 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
5756mulm1d 11172 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
5851, 57syl5eq 2785 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
59 2mulicn 11941 . . . . . . . . . . . . . . 15 (2 · i) ∈ ℂ
6059a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (2 · i) ∈ ℂ)
6142a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (i / 2) ∈ ℂ)
6260, 61, 56mulassd 10744 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
6355, 35negsubdi2d 11093 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
6458, 62, 633eqtr3d 2781 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
6538, 40, 643eqtr3d 2781 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (2 · (i · (arctan‘𝐴))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
6665oveq2d 7188 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − (2 · (i · (arctan‘𝐴)))) = ((2 · (log‘(1 + (i · 𝐴)))) − ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
67 mulcl 10701 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ (log‘(1 + (i · 𝐴))) ∈ ℂ) → (2 · (log‘(1 + (i · 𝐴)))) ∈ ℂ)
6828, 35, 67sylancr 590 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (2 · (log‘(1 + (i · 𝐴)))) ∈ ℂ)
6968, 35, 55subsubd 11105 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (((2 · (log‘(1 + (i · 𝐴)))) − (log‘(1 + (i · 𝐴)))) + (log‘(1 − (i · 𝐴)))))
70352timesd 11961 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (2 · (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 + (i · 𝐴)))))
7135, 35, 70mvrladdd 11133 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − (log‘(1 + (i · 𝐴)))) = (log‘(1 + (i · 𝐴))))
7271oveq1d 7187 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (((2 · (log‘(1 + (i · 𝐴)))) − (log‘(1 + (i · 𝐴)))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))
73 atanlogadd 25654 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
74 logef 25327 . . . . . . . . . . . . 13 (((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log → (log‘(exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))
7573, 74syl 17 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (log‘(exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))
76 efadd 15541 . . . . . . . . . . . . . . 15 (((log‘(1 + (i · 𝐴))) ∈ ℂ ∧ (log‘(1 − (i · 𝐴))) ∈ ℂ) → (exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) · (exp‘(log‘(1 − (i · 𝐴))))))
7735, 55, 76syl2anc 587 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → (exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) · (exp‘(log‘(1 − (i · 𝐴))))))
78 eflog 25322 . . . . . . . . . . . . . . . 16 (((1 + (i · 𝐴)) ∈ ℂ ∧ (1 + (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
7933, 34, 78syl2anc 587 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
80 eflog 25322 . . . . . . . . . . . . . . . 16 (((1 − (i · 𝐴)) ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
8153, 54, 80syl2anc 587 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
8279, 81oveq12d 7190 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → ((exp‘(log‘(1 + (i · 𝐴)))) · (exp‘(log‘(1 − (i · 𝐴))))) = ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
83 sq1 13652 . . . . . . . . . . . . . . . . 17 (1↑2) = 1
8483a1i 11 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom arctan → (1↑2) = 1)
85 sqmul 13579 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
861, 9, 85sylancr 590 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
87 i2 13659 . . . . . . . . . . . . . . . . . . 19 (i↑2) = -1
8887oveq1i 7182 . . . . . . . . . . . . . . . . . 18 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
8910mulm1d 11172 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ dom arctan → (-1 · (𝐴↑2)) = -(𝐴↑2))
9088, 89syl5eq 2785 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom arctan → ((i↑2) · (𝐴↑2)) = -(𝐴↑2))
9186, 90eqtrd 2773 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom arctan → ((i · 𝐴)↑2) = -(𝐴↑2))
9284, 91oveq12d 7190 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → ((1↑2) − ((i · 𝐴)↑2)) = (1 − -(𝐴↑2)))
93 subsq 13666 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → ((1↑2) − ((i · 𝐴)↑2)) = ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
947, 31, 93sylancr 590 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → ((1↑2) − ((i · 𝐴)↑2)) = ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
95 subneg 11015 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − -(𝐴↑2)) = (1 + (𝐴↑2)))
967, 10, 95sylancr 590 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom arctan → (1 − -(𝐴↑2)) = (1 + (𝐴↑2)))
9792, 94, 963eqtr3d 2781 . . . . . . . . . . . . . 14 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) = (1 + (𝐴↑2)))
9877, 82, 973eqtrd 2777 . . . . . . . . . . . . 13 (𝐴 ∈ dom arctan → (exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = (1 + (𝐴↑2)))
9998fveq2d 6680 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan → (log‘(exp‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))))) = (log‘(1 + (𝐴↑2))))
10075, 99eqtr3d 2775 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = (log‘(1 + (𝐴↑2))))
10169, 72, 1003eqtrd 2777 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((2 · (log‘(1 + (i · 𝐴)))) − ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (log‘(1 + (𝐴↑2))))
10236, 66, 1013eqtrd 2777 . . . . . . . . 9 (𝐴 ∈ dom arctan → (2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) = (log‘(1 + (𝐴↑2))))
103102oveq1d 7187 . . . . . . . 8 (𝐴 ∈ dom arctan → ((2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) / 2) = ((log‘(1 + (𝐴↑2))) / 2))
10435, 4subcld 11077 . . . . . . . . 9 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))) ∈ ℂ)
10545a1i 11 . . . . . . . . 9 (𝐴 ∈ dom arctan → 2 ≠ 0)
106104, 29, 105divcan3d 11501 . . . . . . . 8 (𝐴 ∈ dom arctan → ((2 · ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴)))) / 2) = ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))))
10723, 29, 105divrec2d 11500 . . . . . . . 8 (𝐴 ∈ dom arctan → ((log‘(1 + (𝐴↑2))) / 2) = ((1 / 2) · (log‘(1 + (𝐴↑2)))))
108103, 106, 1073eqtr3d 2781 . . . . . . 7 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))) = ((1 / 2) · (log‘(1 + (𝐴↑2)))))
10935, 4, 25subaddd 11095 . . . . . . 7 (𝐴 ∈ dom arctan → (((log‘(1 + (i · 𝐴))) − (i · (arctan‘𝐴))) = ((1 / 2) · (log‘(1 + (𝐴↑2)))) ↔ ((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2))))) = (log‘(1 + (i · 𝐴)))))
110108, 109mpbid 235 . . . . . 6 (𝐴 ∈ dom arctan → ((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2))))) = (log‘(1 + (i · 𝐴))))
111110fveq2d 6680 . . . . 5 (𝐴 ∈ dom arctan → (exp‘((i · (arctan‘𝐴)) + ((1 / 2) · (log‘(1 + (𝐴↑2)))))) = (exp‘(log‘(1 + (i · 𝐴)))))
11227, 111eqtr3d 2775 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))) = (exp‘(log‘(1 + (i · 𝐴)))))
11322a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → (1 / 2) ∈ ℂ)
11412, 16, 113cxpefd 25457 . . . . . 6 (𝐴 ∈ dom arctan → ((1 + (𝐴↑2))↑𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘(1 + (𝐴↑2))))))
115 cxpsqrt 25448 . . . . . . 7 ((1 + (𝐴↑2)) ∈ ℂ → ((1 + (𝐴↑2))↑𝑐(1 / 2)) = (√‘(1 + (𝐴↑2))))
11612, 115syl 17 . . . . . 6 (𝐴 ∈ dom arctan → ((1 + (𝐴↑2))↑𝑐(1 / 2)) = (√‘(1 + (𝐴↑2))))
117114, 116eqtr3d 2775 . . . . 5 (𝐴 ∈ dom arctan → (exp‘((1 / 2) · (log‘(1 + (𝐴↑2))))) = (√‘(1 + (𝐴↑2))))
118117oveq2d 7188 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) · (exp‘((1 / 2) · (log‘(1 + (𝐴↑2)))))) = ((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))))
119112, 118, 793eqtr3d 2781 . . 3 (𝐴 ∈ dom arctan → ((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))) = (1 + (i · 𝐴)))
120119oveq1d 7187 . 2 (𝐴 ∈ dom arctan → (((exp‘(i · (arctan‘𝐴))) · (√‘(1 + (𝐴↑2)))) / (√‘(1 + (𝐴↑2)))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
12121, 120eqtr3d 2775 1 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1542  wcel 2114  wne 2934  dom cdm 5525  ran crn 5526  cfv 6339  (class class class)co 7172  cc 10615  0cc0 10617  1c1 10618  ici 10619   + caddc 10620   · cmul 10622  cmin 10950  -cneg 10951   / cdiv 11377  2c2 11773  cexp 13523  csqrt 14684  expce 15509  logclog 25300  𝑐ccxp 25301  arctancatan 25604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481  ax-inf2 9179  ax-cnex 10673  ax-resscn 10674  ax-1cn 10675  ax-icn 10676  ax-addcl 10677  ax-addrcl 10678  ax-mulcl 10679  ax-mulrcl 10680  ax-mulcom 10681  ax-addass 10682  ax-mulass 10683  ax-distr 10684  ax-i2m1 10685  ax-1ne0 10686  ax-1rid 10687  ax-rnegex 10688  ax-rrecex 10689  ax-cnre 10690  ax-pre-lttri 10691  ax-pre-lttrn 10692  ax-pre-ltadd 10693  ax-pre-mulgt0 10694  ax-pre-sup 10695  ax-addf 10696  ax-mulf 10697
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7129  df-ov 7175  df-oprab 7176  df-mpo 7177  df-of 7427  df-om 7602  df-1st 7716  df-2nd 7717  df-supp 7859  df-wrecs 7978  df-recs 8039  df-rdg 8077  df-1o 8133  df-2o 8134  df-er 8322  df-map 8441  df-pm 8442  df-ixp 8510  df-en 8558  df-dom 8559  df-sdom 8560  df-fin 8561  df-fsupp 8909  df-fi 8950  df-sup 8981  df-inf 8982  df-oi 9049  df-card 9443  df-pnf 10757  df-mnf 10758  df-xr 10759  df-ltxr 10760  df-le 10761  df-sub 10952  df-neg 10953  df-div 11378  df-nn 11719  df-2 11781  df-3 11782  df-4 11783  df-5 11784  df-6 11785  df-7 11786  df-8 11787  df-9 11788  df-n0 11979  df-z 12065  df-dec 12182  df-uz 12327  df-q 12433  df-rp 12475  df-xneg 12592  df-xadd 12593  df-xmul 12594  df-ioo 12827  df-ioc 12828  df-ico 12829  df-icc 12830  df-fz 12984  df-fzo 13127  df-fl 13255  df-mod 13331  df-seq 13463  df-exp 13524  df-fac 13728  df-bc 13757  df-hash 13785  df-shft 14518  df-cj 14550  df-re 14551  df-im 14552  df-sqrt 14686  df-abs 14687  df-limsup 14920  df-clim 14937  df-rlim 14938  df-sum 15138  df-ef 15515  df-sin 15517  df-cos 15518  df-pi 15520  df-struct 16590  df-ndx 16591  df-slot 16592  df-base 16594  df-sets 16595  df-ress 16596  df-plusg 16683  df-mulr 16684  df-starv 16685  df-sca 16686  df-vsca 16687  df-ip 16688  df-tset 16689  df-ple 16690  df-ds 16692  df-unif 16693  df-hom 16694  df-cco 16695  df-rest 16801  df-topn 16802  df-0g 16820  df-gsum 16821  df-topgen 16822  df-pt 16823  df-prds 16826  df-xrs 16880  df-qtop 16885  df-imas 16886  df-xps 16888  df-mre 16962  df-mrc 16963  df-acs 16965  df-mgm 17970  df-sgrp 18019  df-mnd 18030  df-submnd 18075  df-mulg 18345  df-cntz 18567  df-cmn 19028  df-psmet 20211  df-xmet 20212  df-met 20213  df-bl 20214  df-mopn 20215  df-fbas 20216  df-fg 20217  df-cnfld 20220  df-top 21647  df-topon 21664  df-topsp 21686  df-bases 21699  df-cld 21772  df-ntr 21773  df-cls 21774  df-nei 21851  df-lp 21889  df-perf 21890  df-cn 21980  df-cnp 21981  df-haus 22068  df-tx 22315  df-hmeo 22508  df-fil 22599  df-fm 22691  df-flim 22692  df-flf 22693  df-xms 23075  df-ms 23076  df-tms 23077  df-cncf 23632  df-limc 24620  df-dv 24621  df-log 25302  df-cxp 25303  df-atan 25607
This theorem is referenced by:  cosatan  25661
  Copyright terms: Public domain W3C validator