| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imval2 | Structured version Visualization version GIF version | ||
| Description: The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.) |
| Ref | Expression |
|---|---|
| imval2 | ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imcl 15020 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
| 2 | 1 | recnd 11147 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ) |
| 3 | 2mulicn 12352 | . . . 4 ⊢ (2 · i) ∈ ℂ | |
| 4 | 2muline0 12353 | . . . 4 ⊢ (2 · i) ≠ 0 | |
| 5 | divcan4 11810 | . . . 4 ⊢ (((ℑ‘𝐴) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = (ℑ‘𝐴)) | |
| 6 | 3, 4, 5 | mp3an23 1455 | . . 3 ⊢ ((ℑ‘𝐴) ∈ ℂ → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = (ℑ‘𝐴)) |
| 7 | 2, 6 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = (ℑ‘𝐴)) |
| 8 | recl 15019 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
| 9 | 8 | recnd 11147 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
| 10 | ax-icn 11072 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 11 | mulcl 11097 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ) | |
| 12 | 10, 2, 11 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ) |
| 13 | 9, 12 | addcld 11138 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) ∈ ℂ) |
| 14 | 13, 9, 12 | subsubd 11507 | . . . 4 ⊢ (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) + (i · (ℑ‘𝐴)))) |
| 15 | replim 15025 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | |
| 16 | remim 15026 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) | |
| 17 | 15, 16 | oveq12d 7370 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 − (∗‘𝐴)) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) |
| 18 | 12 | 2timesd 12371 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (2 · (i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴)))) |
| 19 | mulcom 11099 | . . . . . . . 8 ⊢ (((ℑ‘𝐴) ∈ ℂ ∧ (2 · i) ∈ ℂ) → ((ℑ‘𝐴) · (2 · i)) = ((2 · i) · (ℑ‘𝐴))) | |
| 20 | 3, 19 | mpan2 691 | . . . . . . 7 ⊢ ((ℑ‘𝐴) ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = ((2 · i) · (ℑ‘𝐴))) |
| 21 | 2cn 12207 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
| 22 | mulass 11101 | . . . . . . . 8 ⊢ ((2 ∈ ℂ ∧ i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((2 · i) · (ℑ‘𝐴)) = (2 · (i · (ℑ‘𝐴)))) | |
| 23 | 21, 10, 22 | mp3an12 1453 | . . . . . . 7 ⊢ ((ℑ‘𝐴) ∈ ℂ → ((2 · i) · (ℑ‘𝐴)) = (2 · (i · (ℑ‘𝐴)))) |
| 24 | 20, 23 | eqtrd 2768 | . . . . . 6 ⊢ ((ℑ‘𝐴) ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = (2 · (i · (ℑ‘𝐴)))) |
| 25 | 2, 24 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = (2 · (i · (ℑ‘𝐴)))) |
| 26 | 9, 12 | pncan2d 11481 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) = (i · (ℑ‘𝐴))) |
| 27 | 26 | oveq1d 7367 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) + (i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴)))) |
| 28 | 18, 25, 27 | 3eqtr4d 2778 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) + (i · (ℑ‘𝐴)))) |
| 29 | 14, 17, 28 | 3eqtr4rd 2779 | . . 3 ⊢ (𝐴 ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = (𝐴 − (∗‘𝐴))) |
| 30 | 29 | oveq1d 7367 | . 2 ⊢ (𝐴 ∈ ℂ → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = ((𝐴 − (∗‘𝐴)) / (2 · i))) |
| 31 | 7, 30 | eqtr3d 2770 | 1 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 0cc0 11013 ici 11015 + caddc 11016 · cmul 11018 − cmin 11351 / cdiv 11781 2c2 12187 ∗ccj 15005 ℜcre 15006 ℑcim 15007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-cj 15008 df-re 15009 df-im 15010 |
| This theorem is referenced by: resinval 16046 dvmptim 25902 constrelextdg2 33781 constrrecl 33803 |
| Copyright terms: Public domain | W3C validator |