| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imval2 | Structured version Visualization version GIF version | ||
| Description: The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.) |
| Ref | Expression |
|---|---|
| imval2 | ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imcl 15077 | . . . 4 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
| 2 | 1 | recnd 11202 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ) |
| 3 | 2mulicn 12406 | . . . 4 ⊢ (2 · i) ∈ ℂ | |
| 4 | 2muline0 12407 | . . . 4 ⊢ (2 · i) ≠ 0 | |
| 5 | divcan4 11864 | . . . 4 ⊢ (((ℑ‘𝐴) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = (ℑ‘𝐴)) | |
| 6 | 3, 4, 5 | mp3an23 1455 | . . 3 ⊢ ((ℑ‘𝐴) ∈ ℂ → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = (ℑ‘𝐴)) |
| 7 | 2, 6 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = (ℑ‘𝐴)) |
| 8 | recl 15076 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
| 9 | 8 | recnd 11202 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
| 10 | ax-icn 11127 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 11 | mulcl 11152 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ) | |
| 12 | 10, 2, 11 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ) |
| 13 | 9, 12 | addcld 11193 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) ∈ ℂ) |
| 14 | 13, 9, 12 | subsubd 11561 | . . . 4 ⊢ (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) + (i · (ℑ‘𝐴)))) |
| 15 | replim 15082 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | |
| 16 | remim 15083 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) | |
| 17 | 15, 16 | oveq12d 7405 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 − (∗‘𝐴)) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) |
| 18 | 12 | 2timesd 12425 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (2 · (i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴)))) |
| 19 | mulcom 11154 | . . . . . . . 8 ⊢ (((ℑ‘𝐴) ∈ ℂ ∧ (2 · i) ∈ ℂ) → ((ℑ‘𝐴) · (2 · i)) = ((2 · i) · (ℑ‘𝐴))) | |
| 20 | 3, 19 | mpan2 691 | . . . . . . 7 ⊢ ((ℑ‘𝐴) ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = ((2 · i) · (ℑ‘𝐴))) |
| 21 | 2cn 12261 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
| 22 | mulass 11156 | . . . . . . . 8 ⊢ ((2 ∈ ℂ ∧ i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((2 · i) · (ℑ‘𝐴)) = (2 · (i · (ℑ‘𝐴)))) | |
| 23 | 21, 10, 22 | mp3an12 1453 | . . . . . . 7 ⊢ ((ℑ‘𝐴) ∈ ℂ → ((2 · i) · (ℑ‘𝐴)) = (2 · (i · (ℑ‘𝐴)))) |
| 24 | 20, 23 | eqtrd 2764 | . . . . . 6 ⊢ ((ℑ‘𝐴) ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = (2 · (i · (ℑ‘𝐴)))) |
| 25 | 2, 24 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = (2 · (i · (ℑ‘𝐴)))) |
| 26 | 9, 12 | pncan2d 11535 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) = (i · (ℑ‘𝐴))) |
| 27 | 26 | oveq1d 7402 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) + (i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴)))) |
| 28 | 18, 25, 27 | 3eqtr4d 2774 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) + (i · (ℑ‘𝐴)))) |
| 29 | 14, 17, 28 | 3eqtr4rd 2775 | . . 3 ⊢ (𝐴 ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = (𝐴 − (∗‘𝐴))) |
| 30 | 29 | oveq1d 7402 | . 2 ⊢ (𝐴 ∈ ℂ → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = ((𝐴 − (∗‘𝐴)) / (2 · i))) |
| 31 | 7, 30 | eqtr3d 2766 | 1 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 ici 11070 + caddc 11071 · cmul 11073 − cmin 11405 / cdiv 11835 2c2 12241 ∗ccj 15062 ℜcre 15063 ℑcim 15064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-cj 15065 df-re 15066 df-im 15067 |
| This theorem is referenced by: resinval 16103 dvmptim 25874 constrelextdg2 33737 constrrecl 33759 |
| Copyright terms: Public domain | W3C validator |