MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imval2 Structured version   Visualization version   GIF version

Theorem imval2 15175
Description: The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
imval2 (𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i)))

Proof of Theorem imval2
StepHypRef Expression
1 imcl 15135 . . . 4 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
21recnd 11268 . . 3 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
3 2mulicn 12470 . . . 4 (2 · i) ∈ ℂ
4 2muline0 12471 . . . 4 (2 · i) ≠ 0
5 divcan4 11928 . . . 4 (((ℑ‘𝐴) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = (ℑ‘𝐴))
63, 4, 5mp3an23 1455 . . 3 ((ℑ‘𝐴) ∈ ℂ → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = (ℑ‘𝐴))
72, 6syl 17 . 2 (𝐴 ∈ ℂ → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = (ℑ‘𝐴))
8 recl 15134 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
98recnd 11268 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
10 ax-icn 11193 . . . . . . 7 i ∈ ℂ
11 mulcl 11218 . . . . . . 7 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
1210, 2, 11sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
139, 12addcld 11259 . . . . 5 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) ∈ ℂ)
1413, 9, 12subsubd 11627 . . . 4 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) + (i · (ℑ‘𝐴))))
15 replim 15140 . . . . 5 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
16 remim 15141 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
1715, 16oveq12d 7428 . . . 4 (𝐴 ∈ ℂ → (𝐴 − (∗‘𝐴)) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
18122timesd 12489 . . . . 5 (𝐴 ∈ ℂ → (2 · (i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴))))
19 mulcom 11220 . . . . . . . 8 (((ℑ‘𝐴) ∈ ℂ ∧ (2 · i) ∈ ℂ) → ((ℑ‘𝐴) · (2 · i)) = ((2 · i) · (ℑ‘𝐴)))
203, 19mpan2 691 . . . . . . 7 ((ℑ‘𝐴) ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = ((2 · i) · (ℑ‘𝐴)))
21 2cn 12320 . . . . . . . 8 2 ∈ ℂ
22 mulass 11222 . . . . . . . 8 ((2 ∈ ℂ ∧ i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((2 · i) · (ℑ‘𝐴)) = (2 · (i · (ℑ‘𝐴))))
2321, 10, 22mp3an12 1453 . . . . . . 7 ((ℑ‘𝐴) ∈ ℂ → ((2 · i) · (ℑ‘𝐴)) = (2 · (i · (ℑ‘𝐴))))
2420, 23eqtrd 2771 . . . . . 6 ((ℑ‘𝐴) ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = (2 · (i · (ℑ‘𝐴))))
252, 24syl 17 . . . . 5 (𝐴 ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = (2 · (i · (ℑ‘𝐴))))
269, 12pncan2d 11601 . . . . . 6 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) = (i · (ℑ‘𝐴)))
2726oveq1d 7425 . . . . 5 (𝐴 ∈ ℂ → ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) + (i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴))))
2818, 25, 273eqtr4d 2781 . . . 4 (𝐴 ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − (ℜ‘𝐴)) + (i · (ℑ‘𝐴))))
2914, 17, 283eqtr4rd 2782 . . 3 (𝐴 ∈ ℂ → ((ℑ‘𝐴) · (2 · i)) = (𝐴 − (∗‘𝐴)))
3029oveq1d 7425 . 2 (𝐴 ∈ ℂ → (((ℑ‘𝐴) · (2 · i)) / (2 · i)) = ((𝐴 − (∗‘𝐴)) / (2 · i)))
317, 30eqtr3d 2773 1 (𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2933  cfv 6536  (class class class)co 7410  cc 11132  0cc0 11134  ici 11136   + caddc 11137   · cmul 11139  cmin 11471   / cdiv 11899  2c2 12300  ccj 15120  cre 15121  cim 15122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-cj 15123  df-re 15124  df-im 15125
This theorem is referenced by:  resinval  16158  dvmptim  25931  constrelextdg2  33786  constrrecl  33808
  Copyright terms: Public domain W3C validator