MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinneg Structured version   Visualization version   GIF version

Theorem sinneg 16164
Description: The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
sinneg (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴))

Proof of Theorem sinneg
StepHypRef Expression
1 negcl 11482 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
2 sinval 16140 . . 3 (-𝐴 ∈ ℂ → (sin‘-𝐴) = (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i)))
31, 2syl 17 . 2 (𝐴 ∈ ℂ → (sin‘-𝐴) = (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i)))
4 sinval 16140 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
54negeqd 11476 . . . 4 (𝐴 ∈ ℂ → -(sin‘𝐴) = -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
6 ax-icn 11188 . . . . . . . 8 i ∈ ℂ
7 mulcl 11213 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
86, 7mpan 690 . . . . . . 7 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
9 efcl 16098 . . . . . . 7 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
108, 9syl 17 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
11 negicn 11483 . . . . . . . 8 -i ∈ ℂ
12 mulcl 11213 . . . . . . . 8 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
1311, 12mpan 690 . . . . . . 7 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
14 efcl 16098 . . . . . . 7 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
1513, 14syl 17 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
1610, 15subcld 11594 . . . . 5 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
17 2mulicn 12465 . . . . . 6 (2 · i) ∈ ℂ
18 2muline0 12466 . . . . . 6 (2 · i) ≠ 0
19 divneg 11933 . . . . . 6 ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
2017, 18, 19mp3an23 1455 . . . . 5 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
2116, 20syl 17 . . . 4 (𝐴 ∈ ℂ → -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
225, 21eqtrd 2770 . . 3 (𝐴 ∈ ℂ → -(sin‘𝐴) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
23 mulneg12 11675 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴))
246, 23mpan 690 . . . . . . . 8 (𝐴 ∈ ℂ → (-i · 𝐴) = (i · -𝐴))
2524eqcomd 2741 . . . . . . 7 (𝐴 ∈ ℂ → (i · -𝐴) = (-i · 𝐴))
2625fveq2d 6880 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = (exp‘(-i · 𝐴)))
27 mul2neg 11676 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · -𝐴) = (i · 𝐴))
286, 27mpan 690 . . . . . . 7 (𝐴 ∈ ℂ → (-i · -𝐴) = (i · 𝐴))
2928fveq2d 6880 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(-i · -𝐴)) = (exp‘(i · 𝐴)))
3026, 29oveq12d 7423 . . . . 5 (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) = ((exp‘(-i · 𝐴)) − (exp‘(i · 𝐴))))
3110, 15negsubdi2d 11610 . . . . 5 (𝐴 ∈ ℂ → -((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = ((exp‘(-i · 𝐴)) − (exp‘(i · 𝐴))))
3230, 31eqtr4d 2773 . . . 4 (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) = -((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))))
3332oveq1d 7420 . . 3 (𝐴 ∈ ℂ → (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
3422, 33eqtr4d 2773 . 2 (𝐴 ∈ ℂ → -(sin‘𝐴) = (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i)))
353, 34eqtr4d 2773 1 (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2932  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129  ici 11131   · cmul 11134  cmin 11466  -cneg 11467   / cdiv 11894  2c2 12295  expce 16077  sincsin 16079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-ico 13368  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-fac 14292  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085
This theorem is referenced by:  tanneg  16166  sin0  16167  efmival  16171  sinsub  16186  cossub  16187  sincossq  16194  sin2pim  26446  reasinsin  26858  atantan  26885  sinccvglem  35694  dirkertrigeqlem2  46128  fourierdlem43  46179  fourierdlem44  46180  sqwvfoura  46257
  Copyright terms: Public domain W3C validator