MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinneg Structured version   Visualization version   GIF version

Theorem sinneg 16090
Description: The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
sinneg (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴))

Proof of Theorem sinneg
StepHypRef Expression
1 negcl 11397 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
2 sinval 16066 . . 3 (-𝐴 ∈ ℂ → (sin‘-𝐴) = (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i)))
31, 2syl 17 . 2 (𝐴 ∈ ℂ → (sin‘-𝐴) = (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i)))
4 sinval 16066 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
54negeqd 11391 . . . 4 (𝐴 ∈ ℂ → -(sin‘𝐴) = -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
6 ax-icn 11103 . . . . . . . 8 i ∈ ℂ
7 mulcl 11128 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
86, 7mpan 690 . . . . . . 7 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
9 efcl 16024 . . . . . . 7 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
108, 9syl 17 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
11 negicn 11398 . . . . . . . 8 -i ∈ ℂ
12 mulcl 11128 . . . . . . . 8 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
1311, 12mpan 690 . . . . . . 7 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
14 efcl 16024 . . . . . . 7 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
1513, 14syl 17 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
1610, 15subcld 11509 . . . . 5 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
17 2mulicn 12382 . . . . . 6 (2 · i) ∈ ℂ
18 2muline0 12383 . . . . . 6 (2 · i) ≠ 0
19 divneg 11850 . . . . . 6 ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
2017, 18, 19mp3an23 1455 . . . . 5 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
2116, 20syl 17 . . . 4 (𝐴 ∈ ℂ → -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
225, 21eqtrd 2764 . . 3 (𝐴 ∈ ℂ → -(sin‘𝐴) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
23 mulneg12 11592 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴))
246, 23mpan 690 . . . . . . . 8 (𝐴 ∈ ℂ → (-i · 𝐴) = (i · -𝐴))
2524eqcomd 2735 . . . . . . 7 (𝐴 ∈ ℂ → (i · -𝐴) = (-i · 𝐴))
2625fveq2d 6844 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = (exp‘(-i · 𝐴)))
27 mul2neg 11593 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · -𝐴) = (i · 𝐴))
286, 27mpan 690 . . . . . . 7 (𝐴 ∈ ℂ → (-i · -𝐴) = (i · 𝐴))
2928fveq2d 6844 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(-i · -𝐴)) = (exp‘(i · 𝐴)))
3026, 29oveq12d 7387 . . . . 5 (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) = ((exp‘(-i · 𝐴)) − (exp‘(i · 𝐴))))
3110, 15negsubdi2d 11525 . . . . 5 (𝐴 ∈ ℂ → -((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = ((exp‘(-i · 𝐴)) − (exp‘(i · 𝐴))))
3230, 31eqtr4d 2767 . . . 4 (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) = -((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))))
3332oveq1d 7384 . . 3 (𝐴 ∈ ℂ → (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
3422, 33eqtr4d 2767 . 2 (𝐴 ∈ ℂ → -(sin‘𝐴) = (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i)))
353, 34eqtr4d 2767 1 (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  ici 11046   · cmul 11049  cmin 11381  -cneg 11382   / cdiv 11811  2c2 12217  expce 16003  sincsin 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-fac 14215  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011
This theorem is referenced by:  tanneg  16092  sin0  16093  efmival  16097  sinsub  16112  cossub  16113  sincossq  16120  sin2pim  26370  reasinsin  26782  atantan  26809  sinccvglem  35632  sinpim  42311  dirkertrigeqlem2  46070  fourierdlem43  46121  fourierdlem44  46122  sqwvfoura  46199
  Copyright terms: Public domain W3C validator