![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sinneg | Structured version Visualization version GIF version |
Description: The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005.) |
Ref | Expression |
---|---|
sinneg | ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 11506 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
2 | sinval 16155 | . . 3 ⊢ (-𝐴 ∈ ℂ → (sin‘-𝐴) = (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i))) |
4 | sinval 16155 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) | |
5 | 4 | negeqd 11500 | . . . 4 ⊢ (𝐴 ∈ ℂ → -(sin‘𝐴) = -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
6 | ax-icn 11212 | . . . . . . . 8 ⊢ i ∈ ℂ | |
7 | mulcl 11237 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
8 | 6, 7 | mpan 690 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
9 | efcl 16115 | . . . . . . 7 ⊢ ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ) |
11 | negicn 11507 | . . . . . . . 8 ⊢ -i ∈ ℂ | |
12 | mulcl 11237 | . . . . . . . 8 ⊢ ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ) | |
13 | 11, 12 | mpan 690 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ) |
14 | efcl 16115 | . . . . . . 7 ⊢ ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ) |
16 | 10, 15 | subcld 11618 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ) |
17 | 2mulicn 12487 | . . . . . 6 ⊢ (2 · i) ∈ ℂ | |
18 | 2muline0 12488 | . . . . . 6 ⊢ (2 · i) ≠ 0 | |
19 | divneg 11957 | . . . . . 6 ⊢ ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) | |
20 | 17, 18, 19 | mp3an23 1452 | . . . . 5 ⊢ (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
21 | 16, 20 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℂ → -(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
22 | 5, 21 | eqtrd 2775 | . . 3 ⊢ (𝐴 ∈ ℂ → -(sin‘𝐴) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
23 | mulneg12 11699 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴)) | |
24 | 6, 23 | mpan 690 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (-i · 𝐴) = (i · -𝐴)) |
25 | 24 | eqcomd 2741 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (i · -𝐴) = (-i · 𝐴)) |
26 | 25 | fveq2d 6911 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = (exp‘(-i · 𝐴))) |
27 | mul2neg 11700 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · -𝐴) = (i · 𝐴)) | |
28 | 6, 27 | mpan 690 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (-i · -𝐴) = (i · 𝐴)) |
29 | 28 | fveq2d 6911 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · -𝐴)) = (exp‘(i · 𝐴))) |
30 | 26, 29 | oveq12d 7449 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) = ((exp‘(-i · 𝐴)) − (exp‘(i · 𝐴)))) |
31 | 10, 15 | negsubdi2d 11634 | . . . . 5 ⊢ (𝐴 ∈ ℂ → -((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = ((exp‘(-i · 𝐴)) − (exp‘(i · 𝐴)))) |
32 | 30, 31 | eqtr4d 2778 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) = -((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) |
33 | 32 | oveq1d 7446 | . . 3 ⊢ (𝐴 ∈ ℂ → (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i)) = (-((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) |
34 | 22, 33 | eqtr4d 2778 | . 2 ⊢ (𝐴 ∈ ℂ → -(sin‘𝐴) = (((exp‘(i · -𝐴)) − (exp‘(-i · -𝐴))) / (2 · i))) |
35 | 3, 34 | eqtr4d 2778 | 1 ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 0cc0 11153 ici 11155 · cmul 11158 − cmin 11490 -cneg 11491 / cdiv 11918 2c2 12319 expce 16094 sincsin 16096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-ico 13390 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-fac 14310 df-hash 14367 df-shft 15103 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-ef 16100 df-sin 16102 |
This theorem is referenced by: tanneg 16181 sin0 16182 efmival 16186 sinsub 16201 cossub 16202 sincossq 16209 sin2pim 26542 reasinsin 26954 atantan 26981 sinccvglem 35657 dirkertrigeqlem2 46055 fourierdlem43 46106 fourierdlem44 46107 sqwvfoura 46184 |
Copyright terms: Public domain | W3C validator |