MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efival Structured version   Visualization version   GIF version

Theorem efival 15861
Description: The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
efival (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))

Proof of Theorem efival
StepHypRef Expression
1 ax-icn 10930 . . . . . 6 i ∈ ℂ
2 mulcl 10955 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
31, 2mpan 687 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
4 efcl 15792 . . . . 5 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
53, 4syl 17 . . . 4 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
6 negicn 11222 . . . . . 6 -i ∈ ℂ
7 mulcl 10955 . . . . . 6 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
86, 7mpan 687 . . . . 5 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
9 efcl 15792 . . . . 5 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
108, 9syl 17 . . . 4 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
115, 10addcld 10994 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ)
125, 10subcld 11332 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
13 2cn 12048 . . . . 5 2 ∈ ℂ
14 2ne0 12077 . . . . 5 2 ≠ 0
1513, 14pm3.2i 471 . . . 4 (2 ∈ ℂ ∧ 2 ≠ 0)
16 divdir 11658 . . . 4 ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ ∧ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
1715, 16mp3an3 1449 . . 3 ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) ∈ ℂ ∧ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ) → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
1811, 12, 17syl2anc 584 . 2 (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
1910, 5pncan3d 11335 . . . . . 6 (𝐴 ∈ ℂ → ((exp‘(-i · 𝐴)) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = (exp‘(i · 𝐴)))
2019oveq2d 7291 . . . . 5 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) + ((exp‘(-i · 𝐴)) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))))) = ((exp‘(i · 𝐴)) + (exp‘(i · 𝐴))))
215, 10, 12addassd 10997 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = ((exp‘(i · 𝐴)) + ((exp‘(-i · 𝐴)) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))))))
2252timesd 12216 . . . . 5 (𝐴 ∈ ℂ → (2 · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) + (exp‘(i · 𝐴))))
2320, 21, 223eqtr4d 2788 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) = (2 · (exp‘(i · 𝐴))))
2423oveq1d 7290 . . 3 (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2) = ((2 · (exp‘(i · 𝐴))) / 2))
25 divcan3 11659 . . . . 5 (((exp‘(i · 𝐴)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · (exp‘(i · 𝐴))) / 2) = (exp‘(i · 𝐴)))
2613, 14, 25mp3an23 1452 . . . 4 ((exp‘(i · 𝐴)) ∈ ℂ → ((2 · (exp‘(i · 𝐴))) / 2) = (exp‘(i · 𝐴)))
275, 26syl 17 . . 3 (𝐴 ∈ ℂ → ((2 · (exp‘(i · 𝐴))) / 2) = (exp‘(i · 𝐴)))
2824, 27eqtr2d 2779 . 2 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) + ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴)))) / 2))
29 cosval 15832 . . 3 (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2))
30 2mulicn 12196 . . . . . . 7 (2 · i) ∈ ℂ
31 2muline0 12197 . . . . . . 7 (2 · i) ≠ 0
3230, 31pm3.2i 471 . . . . . 6 ((2 · i) ∈ ℂ ∧ (2 · i) ≠ 0)
33 div12 11655 . . . . . 6 ((i ∈ ℂ ∧ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ ((2 · i) ∈ ℂ ∧ (2 · i) ≠ 0)) → (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
341, 32, 33mp3an13 1451 . . . . 5 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
3512, 34syl 17 . . . 4 (𝐴 ∈ ℂ → (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
36 sinval 15831 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
3736oveq2d 7291 . . . 4 (𝐴 ∈ ℂ → (i · (sin‘𝐴)) = (i · (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))))
38 divrec 11649 . . . . . . 7 ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2)))
3913, 14, 38mp3an23 1452 . . . . . 6 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2)))
4012, 39syl 17 . . . . 5 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2)))
411mulid2i 10980 . . . . . . . 8 (1 · i) = i
4241oveq1i 7285 . . . . . . 7 ((1 · i) / (2 · i)) = (i / (2 · i))
43 ine0 11410 . . . . . . . . . . 11 i ≠ 0
441, 43dividi 11708 . . . . . . . . . 10 (i / i) = 1
4544oveq2i 7286 . . . . . . . . 9 ((1 / 2) · (i / i)) = ((1 / 2) · 1)
46 ax-1cn 10929 . . . . . . . . . 10 1 ∈ ℂ
4746, 13, 1, 1, 14, 43divmuldivi 11735 . . . . . . . . 9 ((1 / 2) · (i / i)) = ((1 · i) / (2 · i))
4845, 47eqtr3i 2768 . . . . . . . 8 ((1 / 2) · 1) = ((1 · i) / (2 · i))
49 halfcn 12188 . . . . . . . . 9 (1 / 2) ∈ ℂ
5049mulid1i 10979 . . . . . . . 8 ((1 / 2) · 1) = (1 / 2)
5148, 50eqtr3i 2768 . . . . . . 7 ((1 · i) / (2 · i)) = (1 / 2)
5242, 51eqtr3i 2768 . . . . . 6 (i / (2 · i)) = (1 / 2)
5352oveq2i 7286 . . . . 5 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (1 / 2))
5440, 53eqtr4di 2796 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) · (i / (2 · i))))
5535, 37, 543eqtr4d 2788 . . 3 (𝐴 ∈ ℂ → (i · (sin‘𝐴)) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2))
5629, 55oveq12d 7293 . 2 (𝐴 ∈ ℂ → ((cos‘𝐴) + (i · (sin‘𝐴))) = ((((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2) + (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / 2)))
5718, 28, 563eqtr4d 2788 1 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872  ici 10873   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  expce 15771  sincsin 15773  cosccos 15774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-fac 13988  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780
This theorem is referenced by:  efmival  15862  efeul  15871  efieq  15872  sinadd  15873  cosadd  15874  absefi  15905  demoivre  15909  efhalfpi  25628  efipi  25630  ef2pi  25634  efimpi  25648  efif1olem4  25701  1cubrlem  25991  asinsin  26042  atantan  26073
  Copyright terms: Public domain W3C validator