Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2muline0 | Structured version Visualization version GIF version |
Description: (2 · i) ≠ 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
2muline0 | ⊢ (2 · i) ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 11742 | . 2 ⊢ 2 ∈ ℂ | |
2 | ax-icn 10627 | . 2 ⊢ i ∈ ℂ | |
3 | 2ne0 11771 | . 2 ⊢ 2 ≠ 0 | |
4 | ine0 11106 | . 2 ⊢ i ≠ 0 | |
5 | 1, 2, 3, 4 | mulne0i 11314 | 1 ⊢ (2 · i) ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2952 (class class class)co 7151 0cc0 10568 ici 10570 · cmul 10573 2c2 11722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-po 5444 df-so 5445 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-2 11730 |
This theorem is referenced by: imval2 14551 sinf 15518 sinneg 15540 efival 15546 sinadd 15558 dvmptim 24662 sincn 25131 sineq0 25208 sinasin 25567 tanatan 25597 sineq0ALT 42009 |
Copyright terms: Public domain | W3C validator |