![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sinasin | Structured version Visualization version GIF version |
Description: The arcsine function is an inverse to sin. This is the main property that justifies the notation arcsin or sin↑-1. Because sin is not an injection, the other converse identity asinsin 26240 is only true under limited circumstances. (Contributed by Mario Carneiro, 1-Apr-2015.) |
Ref | Expression |
---|---|
sinasin | ⊢ (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asincl 26221 | . . 3 ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) ∈ ℂ) | |
2 | sinval 16003 | . . 3 ⊢ ((arcsin‘𝐴) ∈ ℂ → (sin‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i))) |
4 | ax-icn 11109 | . . . . . 6 ⊢ i ∈ ℂ | |
5 | mulcl 11134 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
6 | 4, 5 | mpan 688 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
7 | 6 | negcld 11498 | . . . . 5 ⊢ (𝐴 ∈ ℂ → -(i · 𝐴) ∈ ℂ) |
8 | ax-1cn 11108 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
9 | sqcl 14022 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
10 | subcl 11399 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ) | |
11 | 8, 9, 10 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ) |
12 | 11 | sqrtcld 15321 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ) |
13 | 6, 7, 12 | pnpcan2d 11549 | . . . 4 ⊢ (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) − (-(i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((i · 𝐴) − -(i · 𝐴))) |
14 | efiasin 26236 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) | |
15 | mulneg12 11592 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴))) | |
16 | 4, 1, 15 | sylancr 587 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴))) |
17 | asinneg 26234 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴)) | |
18 | 17 | oveq2d 7372 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (i · (arcsin‘-𝐴)) = (i · -(arcsin‘𝐴))) |
19 | 16, 18 | eqtr4d 2779 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · (arcsin‘-𝐴))) |
20 | 19 | fveq2d 6846 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (exp‘(i · (arcsin‘-𝐴)))) |
21 | negcl 11400 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
22 | efiasin 26236 | . . . . . . 7 ⊢ (-𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) | |
23 | 21, 22 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) |
24 | mulneg2 11591 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴)) | |
25 | 4, 24 | mpan 688 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴)) |
26 | sqneg 14020 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2)) | |
27 | 26 | oveq2d 7372 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (1 − (-𝐴↑2)) = (1 − (𝐴↑2))) |
28 | 27 | fveq2d 6846 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (√‘(1 − (-𝐴↑2))) = (√‘(1 − (𝐴↑2)))) |
29 | 25, 28 | oveq12d 7374 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2))))) |
30 | 20, 23, 29 | 3eqtrd 2780 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2))))) |
31 | 14, 30 | oveq12d 7374 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) = (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) − (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))))) |
32 | 6 | 2timesd 12395 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴))) |
33 | 2cn 12227 | . . . . . 6 ⊢ 2 ∈ ℂ | |
34 | mulass 11138 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((2 · i) · 𝐴) = (2 · (i · 𝐴))) | |
35 | 33, 4, 34 | mp3an12 1451 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((2 · i) · 𝐴) = (2 · (i · 𝐴))) |
36 | 6, 6 | subnegd 11518 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) − -(i · 𝐴)) = ((i · 𝐴) + (i · 𝐴))) |
37 | 32, 35, 36 | 3eqtr4d 2786 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((2 · i) · 𝐴) = ((i · 𝐴) − -(i · 𝐴))) |
38 | 13, 31, 37 | 3eqtr4d 2786 | . . 3 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) = ((2 · i) · 𝐴)) |
39 | mulcl 11134 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (i · (arcsin‘𝐴)) ∈ ℂ) | |
40 | 4, 1, 39 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (i · (arcsin‘𝐴)) ∈ ℂ) |
41 | efcl 15964 | . . . . . 6 ⊢ ((i · (arcsin‘𝐴)) ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) ∈ ℂ) | |
42 | 40, 41 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) ∈ ℂ) |
43 | negicn 11401 | . . . . . . 7 ⊢ -i ∈ ℂ | |
44 | mulcl 11134 | . . . . . . 7 ⊢ ((-i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (-i · (arcsin‘𝐴)) ∈ ℂ) | |
45 | 43, 1, 44 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) ∈ ℂ) |
46 | efcl 15964 | . . . . . 6 ⊢ ((-i · (arcsin‘𝐴)) ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) ∈ ℂ) | |
47 | 45, 46 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) ∈ ℂ) |
48 | 42, 47 | subcld 11511 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) ∈ ℂ) |
49 | id 22 | . . . 4 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
50 | 2mulicn 12375 | . . . . 5 ⊢ (2 · i) ∈ ℂ | |
51 | 50 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → (2 · i) ∈ ℂ) |
52 | 2muline0 12376 | . . . . 5 ⊢ (2 · i) ≠ 0 | |
53 | 52 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → (2 · i) ≠ 0) |
54 | 48, 49, 51, 53 | divmul2d 11963 | . . 3 ⊢ (𝐴 ∈ ℂ → ((((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i)) = 𝐴 ↔ ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) = ((2 · i) · 𝐴))) |
55 | 38, 54 | mpbird 256 | . 2 ⊢ (𝐴 ∈ ℂ → (((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i)) = 𝐴) |
56 | 3, 55 | eqtrd 2776 | 1 ⊢ (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ‘cfv 6496 (class class class)co 7356 ℂcc 11048 0cc0 11050 1c1 11051 ici 11052 + caddc 11053 · cmul 11055 − cmin 11384 -cneg 11385 / cdiv 11811 2c2 12207 ↑cexp 13966 √csqrt 15117 expce 15943 sincsin 15945 arcsincasin 26210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7671 ax-inf2 9576 ax-cnex 11106 ax-resscn 11107 ax-1cn 11108 ax-icn 11109 ax-addcl 11110 ax-addrcl 11111 ax-mulcl 11112 ax-mulrcl 11113 ax-mulcom 11114 ax-addass 11115 ax-mulass 11116 ax-distr 11117 ax-i2m1 11118 ax-1ne0 11119 ax-1rid 11120 ax-rnegex 11121 ax-rrecex 11122 ax-cnre 11123 ax-pre-lttri 11124 ax-pre-lttrn 11125 ax-pre-ltadd 11126 ax-pre-mulgt0 11127 ax-pre-sup 11128 ax-addf 11129 ax-mulf 11130 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7312 df-ov 7359 df-oprab 7360 df-mpo 7361 df-of 7616 df-om 7802 df-1st 7920 df-2nd 7921 df-supp 8092 df-frecs 8211 df-wrecs 8242 df-recs 8316 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8647 df-map 8766 df-pm 8767 df-ixp 8835 df-en 8883 df-dom 8884 df-sdom 8885 df-fin 8886 df-fsupp 9305 df-fi 9346 df-sup 9377 df-inf 9378 df-oi 9445 df-card 9874 df-pnf 11190 df-mnf 11191 df-xr 11192 df-ltxr 11193 df-le 11194 df-sub 11386 df-neg 11387 df-div 11812 df-nn 12153 df-2 12215 df-3 12216 df-4 12217 df-5 12218 df-6 12219 df-7 12220 df-8 12221 df-9 12222 df-n0 12413 df-z 12499 df-dec 12618 df-uz 12763 df-q 12873 df-rp 12915 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13267 df-ioc 13268 df-ico 13269 df-icc 13270 df-fz 13424 df-fzo 13567 df-fl 13696 df-mod 13774 df-seq 13906 df-exp 13967 df-fac 14173 df-bc 14202 df-hash 14230 df-shft 14951 df-cj 14983 df-re 14984 df-im 14985 df-sqrt 15119 df-abs 15120 df-limsup 15352 df-clim 15369 df-rlim 15370 df-sum 15570 df-ef 15949 df-sin 15951 df-cos 15952 df-pi 15954 df-struct 17018 df-sets 17035 df-slot 17053 df-ndx 17065 df-base 17083 df-ress 17112 df-plusg 17145 df-mulr 17146 df-starv 17147 df-sca 17148 df-vsca 17149 df-ip 17150 df-tset 17151 df-ple 17152 df-ds 17154 df-unif 17155 df-hom 17156 df-cco 17157 df-rest 17303 df-topn 17304 df-0g 17322 df-gsum 17323 df-topgen 17324 df-pt 17325 df-prds 17328 df-xrs 17383 df-qtop 17388 df-imas 17389 df-xps 17391 df-mre 17465 df-mrc 17466 df-acs 17468 df-mgm 18496 df-sgrp 18545 df-mnd 18556 df-submnd 18601 df-mulg 18871 df-cntz 19095 df-cmn 19562 df-psmet 20786 df-xmet 20787 df-met 20788 df-bl 20789 df-mopn 20790 df-fbas 20791 df-fg 20792 df-cnfld 20795 df-top 22241 df-topon 22258 df-topsp 22280 df-bases 22294 df-cld 22368 df-ntr 22369 df-cls 22370 df-nei 22447 df-lp 22485 df-perf 22486 df-cn 22576 df-cnp 22577 df-haus 22664 df-tx 22911 df-hmeo 23104 df-fil 23195 df-fm 23287 df-flim 23288 df-flf 23289 df-xms 23671 df-ms 23672 df-tms 23673 df-cncf 24239 df-limc 25228 df-dv 25229 df-log 25910 df-asin 26213 |
This theorem is referenced by: cosacos 26238 asinsinb 26245 |
Copyright terms: Public domain | W3C validator |