| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sinasin | Structured version Visualization version GIF version | ||
| Description: The arcsine function is an inverse to sin. This is the main property that justifies the notation arcsin or sin↑-1. Because sin is not an injection, the other converse identity asinsin 26778 is only true under limited circumstances. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| Ref | Expression |
|---|---|
| sinasin | ⊢ (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asincl 26759 | . . 3 ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) ∈ ℂ) | |
| 2 | sinval 16066 | . . 3 ⊢ ((arcsin‘𝐴) ∈ ℂ → (sin‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i))) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i))) |
| 4 | ax-icn 11103 | . . . . . 6 ⊢ i ∈ ℂ | |
| 5 | mulcl 11128 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 6 | 4, 5 | mpan 690 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
| 7 | 6 | negcld 11496 | . . . . 5 ⊢ (𝐴 ∈ ℂ → -(i · 𝐴) ∈ ℂ) |
| 8 | ax-1cn 11102 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 9 | sqcl 14059 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
| 10 | subcl 11396 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ) | |
| 11 | 8, 9, 10 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ) |
| 12 | 11 | sqrtcld 15382 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ) |
| 13 | 6, 7, 12 | pnpcan2d 11547 | . . . 4 ⊢ (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) − (-(i · 𝐴) + (√‘(1 − (𝐴↑2))))) = ((i · 𝐴) − -(i · 𝐴))) |
| 14 | efiasin 26774 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) | |
| 15 | mulneg12 11592 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴))) | |
| 16 | 4, 1, 15 | sylancr 587 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴))) |
| 17 | asinneg 26772 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴)) | |
| 18 | 17 | oveq2d 7385 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (i · (arcsin‘-𝐴)) = (i · -(arcsin‘𝐴))) |
| 19 | 16, 18 | eqtr4d 2767 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · (arcsin‘-𝐴))) |
| 20 | 19 | fveq2d 6844 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (exp‘(i · (arcsin‘-𝐴)))) |
| 21 | negcl 11397 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
| 22 | efiasin 26774 | . . . . . . 7 ⊢ (-𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) | |
| 23 | 21, 22 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) |
| 24 | mulneg2 11591 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴)) | |
| 25 | 4, 24 | mpan 690 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴)) |
| 26 | sqneg 14056 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2)) | |
| 27 | 26 | oveq2d 7385 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (1 − (-𝐴↑2)) = (1 − (𝐴↑2))) |
| 28 | 27 | fveq2d 6844 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (√‘(1 − (-𝐴↑2))) = (√‘(1 − (𝐴↑2)))) |
| 29 | 25, 28 | oveq12d 7387 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2))))) |
| 30 | 20, 23, 29 | 3eqtrd 2768 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2))))) |
| 31 | 14, 30 | oveq12d 7387 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) = (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) − (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))))) |
| 32 | 6 | 2timesd 12401 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴))) |
| 33 | 2cn 12237 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 34 | mulass 11132 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((2 · i) · 𝐴) = (2 · (i · 𝐴))) | |
| 35 | 33, 4, 34 | mp3an12 1453 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((2 · i) · 𝐴) = (2 · (i · 𝐴))) |
| 36 | 6, 6 | subnegd 11516 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) − -(i · 𝐴)) = ((i · 𝐴) + (i · 𝐴))) |
| 37 | 32, 35, 36 | 3eqtr4d 2774 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((2 · i) · 𝐴) = ((i · 𝐴) − -(i · 𝐴))) |
| 38 | 13, 31, 37 | 3eqtr4d 2774 | . . 3 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) = ((2 · i) · 𝐴)) |
| 39 | mulcl 11128 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (i · (arcsin‘𝐴)) ∈ ℂ) | |
| 40 | 4, 1, 39 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (i · (arcsin‘𝐴)) ∈ ℂ) |
| 41 | efcl 16024 | . . . . . 6 ⊢ ((i · (arcsin‘𝐴)) ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) ∈ ℂ) | |
| 42 | 40, 41 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) ∈ ℂ) |
| 43 | negicn 11398 | . . . . . . 7 ⊢ -i ∈ ℂ | |
| 44 | mulcl 11128 | . . . . . . 7 ⊢ ((-i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (-i · (arcsin‘𝐴)) ∈ ℂ) | |
| 45 | 43, 1, 44 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) ∈ ℂ) |
| 46 | efcl 16024 | . . . . . 6 ⊢ ((-i · (arcsin‘𝐴)) ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) ∈ ℂ) | |
| 47 | 45, 46 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) ∈ ℂ) |
| 48 | 42, 47 | subcld 11509 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) ∈ ℂ) |
| 49 | id 22 | . . . 4 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
| 50 | 2mulicn 12382 | . . . . 5 ⊢ (2 · i) ∈ ℂ | |
| 51 | 50 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → (2 · i) ∈ ℂ) |
| 52 | 2muline0 12383 | . . . . 5 ⊢ (2 · i) ≠ 0 | |
| 53 | 52 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → (2 · i) ≠ 0) |
| 54 | 48, 49, 51, 53 | divmul2d 11967 | . . 3 ⊢ (𝐴 ∈ ℂ → ((((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i)) = 𝐴 ↔ ((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) = ((2 · i) · 𝐴))) |
| 55 | 38, 54 | mpbird 257 | . 2 ⊢ (𝐴 ∈ ℂ → (((exp‘(i · (arcsin‘𝐴))) − (exp‘(-i · (arcsin‘𝐴)))) / (2 · i)) = 𝐴) |
| 56 | 3, 55 | eqtrd 2764 | 1 ⊢ (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 ici 11046 + caddc 11047 · cmul 11049 − cmin 11381 -cneg 11382 / cdiv 11811 2c2 12217 ↑cexp 14002 √csqrt 15175 expce 16003 sincsin 16005 arcsincasin 26748 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ioc 13287 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-shft 15009 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-sum 15629 df-ef 16009 df-sin 16011 df-cos 16012 df-pi 16014 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19225 df-cmn 19688 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-cld 22882 df-ntr 22883 df-cls 22884 df-nei 22961 df-lp 22999 df-perf 23000 df-cn 23090 df-cnp 23091 df-haus 23178 df-tx 23425 df-hmeo 23618 df-fil 23709 df-fm 23801 df-flim 23802 df-flf 23803 df-xms 24184 df-ms 24185 df-tms 24186 df-cncf 24747 df-limc 25743 df-dv 25744 df-log 26441 df-asin 26751 |
| This theorem is referenced by: cosacos 26776 asinsinb 26783 |
| Copyright terms: Public domain | W3C validator |