![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > it0e0 | Structured version Visualization version GIF version |
Description: i times 0 equals 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
it0e0 | ⊢ (i · 0) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 10400 | . 2 ⊢ i ∈ ℂ | |
2 | 1 | mul01i 10636 | 1 ⊢ (i · 0) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1508 (class class class)co 6982 0cc0 10341 ici 10343 · cmul 10346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-op 4451 df-uni 4718 df-br 4935 df-opab 4997 df-mpt 5014 df-id 5316 df-po 5330 df-so 5331 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-ov 6985 df-er 8095 df-en 8313 df-dom 8314 df-sdom 8315 df-pnf 10482 df-mnf 10483 df-ltxr 10485 |
This theorem is referenced by: reim0 14344 reim0b 14345 rereb 14346 abs1m 14562 cos0 15369 itgrevallem1 24113 efipi 24777 ef2pi 24781 pige3ALT 24823 tanarg 24918 atantayl2 25232 ipidsq 28279 dip0r 28286 lnopeq0i 29580 ftc1anclem8 34455 ftc1anc 34456 areacirclem4 34466 |
Copyright terms: Public domain | W3C validator |