MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2efiatan Structured version   Visualization version   GIF version

Theorem 2efiatan 26878
Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
2efiatan (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (((2 · i) / (𝐴 + i)) − 1))

Proof of Theorem 2efiatan
StepHypRef Expression
1 atanval 26844 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
21oveq2d 7419 . . . 4 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
3 2cn 12313 . . . . . 6 2 ∈ ℂ
43a1i 11 . . . . 5 (𝐴 ∈ dom arctan → 2 ∈ ℂ)
5 ax-icn 11186 . . . . . 6 i ∈ ℂ
65a1i 11 . . . . 5 (𝐴 ∈ dom arctan → i ∈ ℂ)
7 atancl 26841 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ)
84, 6, 7mulassd 11256 . . . 4 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = (2 · (i · (arctan‘𝐴))))
9 halfcl 12465 . . . . . . . . . 10 (i ∈ ℂ → (i / 2) ∈ ℂ)
105, 9ax-mp 5 . . . . . . . . 9 (i / 2) ∈ ℂ
113, 5, 10mulassi 11244 . . . . . . . 8 ((2 · i) · (i / 2)) = (2 · (i · (i / 2)))
123, 5, 10mul12i 11428 . . . . . . . 8 (2 · (i · (i / 2))) = (i · (2 · (i / 2)))
13 2ne0 12342 . . . . . . . . . . 11 2 ≠ 0
145, 3, 13divcan2i 11982 . . . . . . . . . 10 (2 · (i / 2)) = i
1514oveq2i 7414 . . . . . . . . 9 (i · (2 · (i / 2))) = (i · i)
16 ixi 11864 . . . . . . . . 9 (i · i) = -1
1715, 16eqtri 2758 . . . . . . . 8 (i · (2 · (i / 2))) = -1
1811, 12, 173eqtri 2762 . . . . . . 7 ((2 · i) · (i / 2)) = -1
1918oveq1i 7413 . . . . . 6 (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
20 ax-1cn 11185 . . . . . . . . . 10 1 ∈ ℂ
21 atandm2 26837 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2221simp1bi 1145 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
23 mulcl 11211 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
245, 22, 23sylancr 587 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
25 subcl 11479 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
2620, 24, 25sylancr 587 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
2721simp2bi 1146 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
2826, 27logcld 26529 . . . . . . . 8 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
29 addcl 11209 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
3020, 24, 29sylancr 587 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
3121simp3bi 1147 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
3230, 31logcld 26529 . . . . . . . 8 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
3328, 32subcld 11592 . . . . . . 7 (𝐴 ∈ dom arctan → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
3433mulm1d 11687 . . . . . 6 (𝐴 ∈ dom arctan → (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
3519, 34eqtrid 2782 . . . . 5 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
36 2mulicn 12463 . . . . . . 7 (2 · i) ∈ ℂ
3736a1i 11 . . . . . 6 (𝐴 ∈ dom arctan → (2 · i) ∈ ℂ)
3810a1i 11 . . . . . 6 (𝐴 ∈ dom arctan → (i / 2) ∈ ℂ)
3937, 38, 33mulassd 11256 . . . . 5 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
4028, 32negsubdi2d 11608 . . . . 5 (𝐴 ∈ dom arctan → -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
4135, 39, 403eqtr3d 2778 . . . 4 (𝐴 ∈ dom arctan → ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
422, 8, 413eqtr3d 2778 . . 3 (𝐴 ∈ dom arctan → (2 · (i · (arctan‘𝐴))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
4342fveq2d 6879 . 2 (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (exp‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
44 efsub 16116 . . 3 (((log‘(1 + (i · 𝐴))) ∈ ℂ ∧ (log‘(1 − (i · 𝐴))) ∈ ℂ) → (exp‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))))
4532, 28, 44syl2anc 584 . 2 (𝐴 ∈ dom arctan → (exp‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))))
46 eflog 26535 . . . . 5 (((1 + (i · 𝐴)) ∈ ℂ ∧ (1 + (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
4730, 31, 46syl2anc 584 . . . 4 (𝐴 ∈ dom arctan → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
48 eflog 26535 . . . . 5 (((1 − (i · 𝐴)) ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
4926, 27, 48syl2anc 584 . . . 4 (𝐴 ∈ dom arctan → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
5047, 49oveq12d 7421 . . 3 (𝐴 ∈ dom arctan → ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))) = ((1 + (i · 𝐴)) / (1 − (i · 𝐴))))
51 negsub 11529 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i + -𝐴) = (i − 𝐴))
525, 22, 51sylancr 587 . . . . . . 7 (𝐴 ∈ dom arctan → (i + -𝐴) = (i − 𝐴))
536mulridd 11250 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · 1) = i)
5416oveq1i 7413 . . . . . . . . 9 ((i · i) · 𝐴) = (-1 · 𝐴)
556, 6, 22mulassd 11256 . . . . . . . . 9 (𝐴 ∈ dom arctan → ((i · i) · 𝐴) = (i · (i · 𝐴)))
5622mulm1d 11687 . . . . . . . . 9 (𝐴 ∈ dom arctan → (-1 · 𝐴) = -𝐴)
5754, 55, 563eqtr3a 2794 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · (i · 𝐴)) = -𝐴)
5853, 57oveq12d 7421 . . . . . . 7 (𝐴 ∈ dom arctan → ((i · 1) + (i · (i · 𝐴))) = (i + -𝐴))
596, 22, 6pnpcan2d 11630 . . . . . . 7 (𝐴 ∈ dom arctan → ((i + i) − (𝐴 + i)) = (i − 𝐴))
6052, 58, 593eqtr4d 2780 . . . . . 6 (𝐴 ∈ dom arctan → ((i · 1) + (i · (i · 𝐴))) = ((i + i) − (𝐴 + i)))
6120a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → 1 ∈ ℂ)
626, 61, 24adddid 11257 . . . . . 6 (𝐴 ∈ dom arctan → (i · (1 + (i · 𝐴))) = ((i · 1) + (i · (i · 𝐴))))
6362timesd 12482 . . . . . . 7 (𝐴 ∈ dom arctan → (2 · i) = (i + i))
6463oveq1d 7418 . . . . . 6 (𝐴 ∈ dom arctan → ((2 · i) − (𝐴 + i)) = ((i + i) − (𝐴 + i)))
6560, 62, 643eqtr4d 2780 . . . . 5 (𝐴 ∈ dom arctan → (i · (1 + (i · 𝐴))) = ((2 · i) − (𝐴 + i)))
666, 61, 24subdid 11691 . . . . . 6 (𝐴 ∈ dom arctan → (i · (1 − (i · 𝐴))) = ((i · 1) − (i · (i · 𝐴))))
6753, 57oveq12d 7421 . . . . . . 7 (𝐴 ∈ dom arctan → ((i · 1) − (i · (i · 𝐴))) = (i − -𝐴))
68 subneg 11530 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i − -𝐴) = (i + 𝐴))
695, 22, 68sylancr 587 . . . . . . 7 (𝐴 ∈ dom arctan → (i − -𝐴) = (i + 𝐴))
7067, 69eqtrd 2770 . . . . . 6 (𝐴 ∈ dom arctan → ((i · 1) − (i · (i · 𝐴))) = (i + 𝐴))
71 addcom 11419 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i + 𝐴) = (𝐴 + i))
725, 22, 71sylancr 587 . . . . . 6 (𝐴 ∈ dom arctan → (i + 𝐴) = (𝐴 + i))
7366, 70, 723eqtrd 2774 . . . . 5 (𝐴 ∈ dom arctan → (i · (1 − (i · 𝐴))) = (𝐴 + i))
7465, 73oveq12d 7421 . . . 4 (𝐴 ∈ dom arctan → ((i · (1 + (i · 𝐴))) / (i · (1 − (i · 𝐴)))) = (((2 · i) − (𝐴 + i)) / (𝐴 + i)))
75 ine0 11670 . . . . . 6 i ≠ 0
7675a1i 11 . . . . 5 (𝐴 ∈ dom arctan → i ≠ 0)
7730, 26, 6, 27, 76divcan5d 12041 . . . 4 (𝐴 ∈ dom arctan → ((i · (1 + (i · 𝐴))) / (i · (1 − (i · 𝐴)))) = ((1 + (i · 𝐴)) / (1 − (i · 𝐴))))
78 addcl 11209 . . . . . 6 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 + i) ∈ ℂ)
7922, 5, 78sylancl 586 . . . . 5 (𝐴 ∈ dom arctan → (𝐴 + i) ∈ ℂ)
80 subneg 11530 . . . . . . 7 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 − -i) = (𝐴 + i))
8122, 5, 80sylancl 586 . . . . . 6 (𝐴 ∈ dom arctan → (𝐴 − -i) = (𝐴 + i))
82 atandm 26836 . . . . . . . 8 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
8382simp2bi 1146 . . . . . . 7 (𝐴 ∈ dom arctan → 𝐴 ≠ -i)
84 negicn 11481 . . . . . . . 8 -i ∈ ℂ
85 subeq0 11507 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -i ∈ ℂ) → ((𝐴 − -i) = 0 ↔ 𝐴 = -i))
8685necon3bid 2976 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ -i ∈ ℂ) → ((𝐴 − -i) ≠ 0 ↔ 𝐴 ≠ -i))
8722, 84, 86sylancl 586 . . . . . . 7 (𝐴 ∈ dom arctan → ((𝐴 − -i) ≠ 0 ↔ 𝐴 ≠ -i))
8883, 87mpbird 257 . . . . . 6 (𝐴 ∈ dom arctan → (𝐴 − -i) ≠ 0)
8981, 88eqnetrrd 3000 . . . . 5 (𝐴 ∈ dom arctan → (𝐴 + i) ≠ 0)
9037, 79, 79, 89divsubdird 12054 . . . 4 (𝐴 ∈ dom arctan → (((2 · i) − (𝐴 + i)) / (𝐴 + i)) = (((2 · i) / (𝐴 + i)) − ((𝐴 + i) / (𝐴 + i))))
9174, 77, 903eqtr3d 2778 . . 3 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴)) / (1 − (i · 𝐴))) = (((2 · i) / (𝐴 + i)) − ((𝐴 + i) / (𝐴 + i))))
9279, 89dividd 12013 . . . 4 (𝐴 ∈ dom arctan → ((𝐴 + i) / (𝐴 + i)) = 1)
9392oveq2d 7419 . . 3 (𝐴 ∈ dom arctan → (((2 · i) / (𝐴 + i)) − ((𝐴 + i) / (𝐴 + i))) = (((2 · i) / (𝐴 + i)) − 1))
9450, 91, 933eqtrd 2774 . 2 (𝐴 ∈ dom arctan → ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))) = (((2 · i) / (𝐴 + i)) − 1))
9543, 45, 943eqtrd 2774 1 (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (((2 · i) / (𝐴 + i)) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  dom cdm 5654  cfv 6530  (class class class)co 7403  cc 11125  0cc0 11127  1c1 11128  ici 11129   + caddc 11130   · cmul 11132  cmin 11464  -cneg 11465   / cdiv 11892  2c2 12293  expce 16075  logclog 26513  arctancatan 26824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-shft 15084  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-sum 15701  df-ef 16081  df-sin 16083  df-cos 16084  df-pi 16086  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-limc 25817  df-dv 25818  df-log 26515  df-atan 26827
This theorem is referenced by:  tanatan  26879
  Copyright terms: Public domain W3C validator