MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2efiatan Structured version   Visualization version   GIF version

Theorem 2efiatan 26765
Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
2efiatan (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (((2 · i) / (𝐴 + i)) − 1))

Proof of Theorem 2efiatan
StepHypRef Expression
1 atanval 26731 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
21oveq2d 7417 . . . 4 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
3 2cn 12283 . . . . . 6 2 ∈ ℂ
43a1i 11 . . . . 5 (𝐴 ∈ dom arctan → 2 ∈ ℂ)
5 ax-icn 11164 . . . . . 6 i ∈ ℂ
65a1i 11 . . . . 5 (𝐴 ∈ dom arctan → i ∈ ℂ)
7 atancl 26728 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ)
84, 6, 7mulassd 11233 . . . 4 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = (2 · (i · (arctan‘𝐴))))
9 halfcl 12433 . . . . . . . . . 10 (i ∈ ℂ → (i / 2) ∈ ℂ)
105, 9ax-mp 5 . . . . . . . . 9 (i / 2) ∈ ℂ
113, 5, 10mulassi 11221 . . . . . . . 8 ((2 · i) · (i / 2)) = (2 · (i · (i / 2)))
123, 5, 10mul12i 11405 . . . . . . . 8 (2 · (i · (i / 2))) = (i · (2 · (i / 2)))
13 2ne0 12312 . . . . . . . . . . 11 2 ≠ 0
145, 3, 13divcan2i 11953 . . . . . . . . . 10 (2 · (i / 2)) = i
1514oveq2i 7412 . . . . . . . . 9 (i · (2 · (i / 2))) = (i · i)
16 ixi 11839 . . . . . . . . 9 (i · i) = -1
1715, 16eqtri 2752 . . . . . . . 8 (i · (2 · (i / 2))) = -1
1811, 12, 173eqtri 2756 . . . . . . 7 ((2 · i) · (i / 2)) = -1
1918oveq1i 7411 . . . . . 6 (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
20 ax-1cn 11163 . . . . . . . . . 10 1 ∈ ℂ
21 atandm2 26724 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2221simp1bi 1142 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
23 mulcl 11189 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
245, 22, 23sylancr 586 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
25 subcl 11455 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
2620, 24, 25sylancr 586 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
2721simp2bi 1143 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
2826, 27logcld 26420 . . . . . . . 8 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
29 addcl 11187 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
3020, 24, 29sylancr 586 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
3121simp3bi 1144 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
3230, 31logcld 26420 . . . . . . . 8 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
3328, 32subcld 11567 . . . . . . 7 (𝐴 ∈ dom arctan → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
3433mulm1d 11662 . . . . . 6 (𝐴 ∈ dom arctan → (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
3519, 34eqtrid 2776 . . . . 5 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
36 2mulicn 12431 . . . . . . 7 (2 · i) ∈ ℂ
3736a1i 11 . . . . . 6 (𝐴 ∈ dom arctan → (2 · i) ∈ ℂ)
3810a1i 11 . . . . . 6 (𝐴 ∈ dom arctan → (i / 2) ∈ ℂ)
3937, 38, 33mulassd 11233 . . . . 5 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
4028, 32negsubdi2d 11583 . . . . 5 (𝐴 ∈ dom arctan → -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
4135, 39, 403eqtr3d 2772 . . . 4 (𝐴 ∈ dom arctan → ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
422, 8, 413eqtr3d 2772 . . 3 (𝐴 ∈ dom arctan → (2 · (i · (arctan‘𝐴))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
4342fveq2d 6885 . 2 (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (exp‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
44 efsub 16039 . . 3 (((log‘(1 + (i · 𝐴))) ∈ ℂ ∧ (log‘(1 − (i · 𝐴))) ∈ ℂ) → (exp‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))))
4532, 28, 44syl2anc 583 . 2 (𝐴 ∈ dom arctan → (exp‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))))
46 eflog 26426 . . . . 5 (((1 + (i · 𝐴)) ∈ ℂ ∧ (1 + (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
4730, 31, 46syl2anc 583 . . . 4 (𝐴 ∈ dom arctan → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
48 eflog 26426 . . . . 5 (((1 − (i · 𝐴)) ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
4926, 27, 48syl2anc 583 . . . 4 (𝐴 ∈ dom arctan → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
5047, 49oveq12d 7419 . . 3 (𝐴 ∈ dom arctan → ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))) = ((1 + (i · 𝐴)) / (1 − (i · 𝐴))))
51 negsub 11504 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i + -𝐴) = (i − 𝐴))
525, 22, 51sylancr 586 . . . . . . 7 (𝐴 ∈ dom arctan → (i + -𝐴) = (i − 𝐴))
536mulridd 11227 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · 1) = i)
5416oveq1i 7411 . . . . . . . . 9 ((i · i) · 𝐴) = (-1 · 𝐴)
556, 6, 22mulassd 11233 . . . . . . . . 9 (𝐴 ∈ dom arctan → ((i · i) · 𝐴) = (i · (i · 𝐴)))
5622mulm1d 11662 . . . . . . . . 9 (𝐴 ∈ dom arctan → (-1 · 𝐴) = -𝐴)
5754, 55, 563eqtr3a 2788 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · (i · 𝐴)) = -𝐴)
5853, 57oveq12d 7419 . . . . . . 7 (𝐴 ∈ dom arctan → ((i · 1) + (i · (i · 𝐴))) = (i + -𝐴))
596, 22, 6pnpcan2d 11605 . . . . . . 7 (𝐴 ∈ dom arctan → ((i + i) − (𝐴 + i)) = (i − 𝐴))
6052, 58, 593eqtr4d 2774 . . . . . 6 (𝐴 ∈ dom arctan → ((i · 1) + (i · (i · 𝐴))) = ((i + i) − (𝐴 + i)))
6120a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → 1 ∈ ℂ)
626, 61, 24adddid 11234 . . . . . 6 (𝐴 ∈ dom arctan → (i · (1 + (i · 𝐴))) = ((i · 1) + (i · (i · 𝐴))))
6362timesd 12451 . . . . . . 7 (𝐴 ∈ dom arctan → (2 · i) = (i + i))
6463oveq1d 7416 . . . . . 6 (𝐴 ∈ dom arctan → ((2 · i) − (𝐴 + i)) = ((i + i) − (𝐴 + i)))
6560, 62, 643eqtr4d 2774 . . . . 5 (𝐴 ∈ dom arctan → (i · (1 + (i · 𝐴))) = ((2 · i) − (𝐴 + i)))
666, 61, 24subdid 11666 . . . . . 6 (𝐴 ∈ dom arctan → (i · (1 − (i · 𝐴))) = ((i · 1) − (i · (i · 𝐴))))
6753, 57oveq12d 7419 . . . . . . 7 (𝐴 ∈ dom arctan → ((i · 1) − (i · (i · 𝐴))) = (i − -𝐴))
68 subneg 11505 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i − -𝐴) = (i + 𝐴))
695, 22, 68sylancr 586 . . . . . . 7 (𝐴 ∈ dom arctan → (i − -𝐴) = (i + 𝐴))
7067, 69eqtrd 2764 . . . . . 6 (𝐴 ∈ dom arctan → ((i · 1) − (i · (i · 𝐴))) = (i + 𝐴))
71 addcom 11396 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i + 𝐴) = (𝐴 + i))
725, 22, 71sylancr 586 . . . . . 6 (𝐴 ∈ dom arctan → (i + 𝐴) = (𝐴 + i))
7366, 70, 723eqtrd 2768 . . . . 5 (𝐴 ∈ dom arctan → (i · (1 − (i · 𝐴))) = (𝐴 + i))
7465, 73oveq12d 7419 . . . 4 (𝐴 ∈ dom arctan → ((i · (1 + (i · 𝐴))) / (i · (1 − (i · 𝐴)))) = (((2 · i) − (𝐴 + i)) / (𝐴 + i)))
75 ine0 11645 . . . . . 6 i ≠ 0
7675a1i 11 . . . . 5 (𝐴 ∈ dom arctan → i ≠ 0)
7730, 26, 6, 27, 76divcan5d 12012 . . . 4 (𝐴 ∈ dom arctan → ((i · (1 + (i · 𝐴))) / (i · (1 − (i · 𝐴)))) = ((1 + (i · 𝐴)) / (1 − (i · 𝐴))))
78 addcl 11187 . . . . . 6 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 + i) ∈ ℂ)
7922, 5, 78sylancl 585 . . . . 5 (𝐴 ∈ dom arctan → (𝐴 + i) ∈ ℂ)
80 subneg 11505 . . . . . . 7 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 − -i) = (𝐴 + i))
8122, 5, 80sylancl 585 . . . . . 6 (𝐴 ∈ dom arctan → (𝐴 − -i) = (𝐴 + i))
82 atandm 26723 . . . . . . . 8 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
8382simp2bi 1143 . . . . . . 7 (𝐴 ∈ dom arctan → 𝐴 ≠ -i)
84 negicn 11457 . . . . . . . 8 -i ∈ ℂ
85 subeq0 11482 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -i ∈ ℂ) → ((𝐴 − -i) = 0 ↔ 𝐴 = -i))
8685necon3bid 2977 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ -i ∈ ℂ) → ((𝐴 − -i) ≠ 0 ↔ 𝐴 ≠ -i))
8722, 84, 86sylancl 585 . . . . . . 7 (𝐴 ∈ dom arctan → ((𝐴 − -i) ≠ 0 ↔ 𝐴 ≠ -i))
8883, 87mpbird 257 . . . . . 6 (𝐴 ∈ dom arctan → (𝐴 − -i) ≠ 0)
8981, 88eqnetrrd 3001 . . . . 5 (𝐴 ∈ dom arctan → (𝐴 + i) ≠ 0)
9037, 79, 79, 89divsubdird 12025 . . . 4 (𝐴 ∈ dom arctan → (((2 · i) − (𝐴 + i)) / (𝐴 + i)) = (((2 · i) / (𝐴 + i)) − ((𝐴 + i) / (𝐴 + i))))
9174, 77, 903eqtr3d 2772 . . 3 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴)) / (1 − (i · 𝐴))) = (((2 · i) / (𝐴 + i)) − ((𝐴 + i) / (𝐴 + i))))
9279, 89dividd 11984 . . . 4 (𝐴 ∈ dom arctan → ((𝐴 + i) / (𝐴 + i)) = 1)
9392oveq2d 7417 . . 3 (𝐴 ∈ dom arctan → (((2 · i) / (𝐴 + i)) − ((𝐴 + i) / (𝐴 + i))) = (((2 · i) / (𝐴 + i)) − 1))
9450, 91, 933eqtrd 2768 . 2 (𝐴 ∈ dom arctan → ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))) = (((2 · i) / (𝐴 + i)) − 1))
9543, 45, 943eqtrd 2768 1 (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (((2 · i) / (𝐴 + i)) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2932  dom cdm 5666  cfv 6533  (class class class)co 7401  cc 11103  0cc0 11105  1c1 11106  ici 11107   + caddc 11108   · cmul 11110  cmin 11440  -cneg 11441   / cdiv 11867  2c2 12263  expce 16001  logclog 26404  arctancatan 26711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9631  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183  ax-addf 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8698  df-map 8817  df-pm 8818  df-ixp 8887  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-fi 9401  df-sup 9432  df-inf 9433  df-oi 9500  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-sum 15629  df-ef 16007  df-sin 16009  df-cos 16010  df-pi 16012  df-struct 17078  df-sets 17095  df-slot 17113  df-ndx 17125  df-base 17143  df-ress 17172  df-plusg 17208  df-mulr 17209  df-starv 17210  df-sca 17211  df-vsca 17212  df-ip 17213  df-tset 17214  df-ple 17215  df-ds 17217  df-unif 17218  df-hom 17219  df-cco 17220  df-rest 17366  df-topn 17367  df-0g 17385  df-gsum 17386  df-topgen 17387  df-pt 17388  df-prds 17391  df-xrs 17446  df-qtop 17451  df-imas 17452  df-xps 17454  df-mre 17528  df-mrc 17529  df-acs 17531  df-mgm 18562  df-sgrp 18641  df-mnd 18657  df-submnd 18703  df-mulg 18985  df-cntz 19222  df-cmn 19691  df-psmet 21219  df-xmet 21220  df-met 21221  df-bl 21222  df-mopn 21223  df-fbas 21224  df-fg 21225  df-cnfld 21228  df-top 22717  df-topon 22734  df-topsp 22756  df-bases 22770  df-cld 22844  df-ntr 22845  df-cls 22846  df-nei 22923  df-lp 22961  df-perf 22962  df-cn 23052  df-cnp 23053  df-haus 23140  df-tx 23387  df-hmeo 23580  df-fil 23671  df-fm 23763  df-flim 23764  df-flf 23765  df-xms 24147  df-ms 24148  df-tms 24149  df-cncf 24719  df-limc 25716  df-dv 25717  df-log 26406  df-atan 26714
This theorem is referenced by:  tanatan  26766
  Copyright terms: Public domain W3C validator