MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2efiatan Structured version   Visualization version   GIF version

Theorem 2efiatan 26049
Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
2efiatan (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (((2 · i) / (𝐴 + i)) − 1))

Proof of Theorem 2efiatan
StepHypRef Expression
1 atanval 26015 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
21oveq2d 7284 . . . 4 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
3 2cn 12031 . . . . . 6 2 ∈ ℂ
43a1i 11 . . . . 5 (𝐴 ∈ dom arctan → 2 ∈ ℂ)
5 ax-icn 10914 . . . . . 6 i ∈ ℂ
65a1i 11 . . . . 5 (𝐴 ∈ dom arctan → i ∈ ℂ)
7 atancl 26012 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ)
84, 6, 7mulassd 10982 . . . 4 (𝐴 ∈ dom arctan → ((2 · i) · (arctan‘𝐴)) = (2 · (i · (arctan‘𝐴))))
9 halfcl 12181 . . . . . . . . . 10 (i ∈ ℂ → (i / 2) ∈ ℂ)
105, 9ax-mp 5 . . . . . . . . 9 (i / 2) ∈ ℂ
113, 5, 10mulassi 10970 . . . . . . . 8 ((2 · i) · (i / 2)) = (2 · (i · (i / 2)))
123, 5, 10mul12i 11153 . . . . . . . 8 (2 · (i · (i / 2))) = (i · (2 · (i / 2)))
13 2ne0 12060 . . . . . . . . . . 11 2 ≠ 0
145, 3, 13divcan2i 11701 . . . . . . . . . 10 (2 · (i / 2)) = i
1514oveq2i 7279 . . . . . . . . 9 (i · (2 · (i / 2))) = (i · i)
16 ixi 11587 . . . . . . . . 9 (i · i) = -1
1715, 16eqtri 2767 . . . . . . . 8 (i · (2 · (i / 2))) = -1
1811, 12, 173eqtri 2771 . . . . . . 7 ((2 · i) · (i / 2)) = -1
1918oveq1i 7278 . . . . . 6 (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
20 ax-1cn 10913 . . . . . . . . . 10 1 ∈ ℂ
21 atandm2 26008 . . . . . . . . . . . 12 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2221simp1bi 1143 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
23 mulcl 10939 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
245, 22, 23sylancr 586 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
25 subcl 11203 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
2620, 24, 25sylancr 586 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
2721simp2bi 1144 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
2826, 27logcld 25707 . . . . . . . 8 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
29 addcl 10937 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
3020, 24, 29sylancr 586 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
3121simp3bi 1145 . . . . . . . . 9 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
3230, 31logcld 25707 . . . . . . . 8 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
3328, 32subcld 11315 . . . . . . 7 (𝐴 ∈ dom arctan → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
3433mulm1d 11410 . . . . . 6 (𝐴 ∈ dom arctan → (-1 · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
3519, 34eqtrid 2791 . . . . 5 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
36 2mulicn 12179 . . . . . . 7 (2 · i) ∈ ℂ
3736a1i 11 . . . . . 6 (𝐴 ∈ dom arctan → (2 · i) ∈ ℂ)
3810a1i 11 . . . . . 6 (𝐴 ∈ dom arctan → (i / 2) ∈ ℂ)
3937, 38, 33mulassd 10982 . . . . 5 (𝐴 ∈ dom arctan → (((2 · i) · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
4028, 32negsubdi2d 11331 . . . . 5 (𝐴 ∈ dom arctan → -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
4135, 39, 403eqtr3d 2787 . . . 4 (𝐴 ∈ dom arctan → ((2 · i) · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
422, 8, 413eqtr3d 2787 . . 3 (𝐴 ∈ dom arctan → (2 · (i · (arctan‘𝐴))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
4342fveq2d 6772 . 2 (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (exp‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
44 efsub 15790 . . 3 (((log‘(1 + (i · 𝐴))) ∈ ℂ ∧ (log‘(1 − (i · 𝐴))) ∈ ℂ) → (exp‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))))
4532, 28, 44syl2anc 583 . 2 (𝐴 ∈ dom arctan → (exp‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))))
46 eflog 25713 . . . . 5 (((1 + (i · 𝐴)) ∈ ℂ ∧ (1 + (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
4730, 31, 46syl2anc 583 . . . 4 (𝐴 ∈ dom arctan → (exp‘(log‘(1 + (i · 𝐴)))) = (1 + (i · 𝐴)))
48 eflog 25713 . . . . 5 (((1 − (i · 𝐴)) ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0) → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
4926, 27, 48syl2anc 583 . . . 4 (𝐴 ∈ dom arctan → (exp‘(log‘(1 − (i · 𝐴)))) = (1 − (i · 𝐴)))
5047, 49oveq12d 7286 . . 3 (𝐴 ∈ dom arctan → ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))) = ((1 + (i · 𝐴)) / (1 − (i · 𝐴))))
51 negsub 11252 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i + -𝐴) = (i − 𝐴))
525, 22, 51sylancr 586 . . . . . . 7 (𝐴 ∈ dom arctan → (i + -𝐴) = (i − 𝐴))
536mulid1d 10976 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · 1) = i)
5416oveq1i 7278 . . . . . . . . 9 ((i · i) · 𝐴) = (-1 · 𝐴)
556, 6, 22mulassd 10982 . . . . . . . . 9 (𝐴 ∈ dom arctan → ((i · i) · 𝐴) = (i · (i · 𝐴)))
5622mulm1d 11410 . . . . . . . . 9 (𝐴 ∈ dom arctan → (-1 · 𝐴) = -𝐴)
5754, 55, 563eqtr3a 2803 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · (i · 𝐴)) = -𝐴)
5853, 57oveq12d 7286 . . . . . . 7 (𝐴 ∈ dom arctan → ((i · 1) + (i · (i · 𝐴))) = (i + -𝐴))
596, 22, 6pnpcan2d 11353 . . . . . . 7 (𝐴 ∈ dom arctan → ((i + i) − (𝐴 + i)) = (i − 𝐴))
6052, 58, 593eqtr4d 2789 . . . . . 6 (𝐴 ∈ dom arctan → ((i · 1) + (i · (i · 𝐴))) = ((i + i) − (𝐴 + i)))
6120a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → 1 ∈ ℂ)
626, 61, 24adddid 10983 . . . . . 6 (𝐴 ∈ dom arctan → (i · (1 + (i · 𝐴))) = ((i · 1) + (i · (i · 𝐴))))
6362timesd 12199 . . . . . . 7 (𝐴 ∈ dom arctan → (2 · i) = (i + i))
6463oveq1d 7283 . . . . . 6 (𝐴 ∈ dom arctan → ((2 · i) − (𝐴 + i)) = ((i + i) − (𝐴 + i)))
6560, 62, 643eqtr4d 2789 . . . . 5 (𝐴 ∈ dom arctan → (i · (1 + (i · 𝐴))) = ((2 · i) − (𝐴 + i)))
666, 61, 24subdid 11414 . . . . . 6 (𝐴 ∈ dom arctan → (i · (1 − (i · 𝐴))) = ((i · 1) − (i · (i · 𝐴))))
6753, 57oveq12d 7286 . . . . . . 7 (𝐴 ∈ dom arctan → ((i · 1) − (i · (i · 𝐴))) = (i − -𝐴))
68 subneg 11253 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i − -𝐴) = (i + 𝐴))
695, 22, 68sylancr 586 . . . . . . 7 (𝐴 ∈ dom arctan → (i − -𝐴) = (i + 𝐴))
7067, 69eqtrd 2779 . . . . . 6 (𝐴 ∈ dom arctan → ((i · 1) − (i · (i · 𝐴))) = (i + 𝐴))
71 addcom 11144 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i + 𝐴) = (𝐴 + i))
725, 22, 71sylancr 586 . . . . . 6 (𝐴 ∈ dom arctan → (i + 𝐴) = (𝐴 + i))
7366, 70, 723eqtrd 2783 . . . . 5 (𝐴 ∈ dom arctan → (i · (1 − (i · 𝐴))) = (𝐴 + i))
7465, 73oveq12d 7286 . . . 4 (𝐴 ∈ dom arctan → ((i · (1 + (i · 𝐴))) / (i · (1 − (i · 𝐴)))) = (((2 · i) − (𝐴 + i)) / (𝐴 + i)))
75 ine0 11393 . . . . . 6 i ≠ 0
7675a1i 11 . . . . 5 (𝐴 ∈ dom arctan → i ≠ 0)
7730, 26, 6, 27, 76divcan5d 11760 . . . 4 (𝐴 ∈ dom arctan → ((i · (1 + (i · 𝐴))) / (i · (1 − (i · 𝐴)))) = ((1 + (i · 𝐴)) / (1 − (i · 𝐴))))
78 addcl 10937 . . . . . 6 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 + i) ∈ ℂ)
7922, 5, 78sylancl 585 . . . . 5 (𝐴 ∈ dom arctan → (𝐴 + i) ∈ ℂ)
80 subneg 11253 . . . . . . 7 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 − -i) = (𝐴 + i))
8122, 5, 80sylancl 585 . . . . . 6 (𝐴 ∈ dom arctan → (𝐴 − -i) = (𝐴 + i))
82 atandm 26007 . . . . . . . 8 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
8382simp2bi 1144 . . . . . . 7 (𝐴 ∈ dom arctan → 𝐴 ≠ -i)
84 negicn 11205 . . . . . . . 8 -i ∈ ℂ
85 subeq0 11230 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -i ∈ ℂ) → ((𝐴 − -i) = 0 ↔ 𝐴 = -i))
8685necon3bid 2989 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ -i ∈ ℂ) → ((𝐴 − -i) ≠ 0 ↔ 𝐴 ≠ -i))
8722, 84, 86sylancl 585 . . . . . . 7 (𝐴 ∈ dom arctan → ((𝐴 − -i) ≠ 0 ↔ 𝐴 ≠ -i))
8883, 87mpbird 256 . . . . . 6 (𝐴 ∈ dom arctan → (𝐴 − -i) ≠ 0)
8981, 88eqnetrrd 3013 . . . . 5 (𝐴 ∈ dom arctan → (𝐴 + i) ≠ 0)
9037, 79, 79, 89divsubdird 11773 . . . 4 (𝐴 ∈ dom arctan → (((2 · i) − (𝐴 + i)) / (𝐴 + i)) = (((2 · i) / (𝐴 + i)) − ((𝐴 + i) / (𝐴 + i))))
9174, 77, 903eqtr3d 2787 . . 3 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴)) / (1 − (i · 𝐴))) = (((2 · i) / (𝐴 + i)) − ((𝐴 + i) / (𝐴 + i))))
9279, 89dividd 11732 . . . 4 (𝐴 ∈ dom arctan → ((𝐴 + i) / (𝐴 + i)) = 1)
9392oveq2d 7284 . . 3 (𝐴 ∈ dom arctan → (((2 · i) / (𝐴 + i)) − ((𝐴 + i) / (𝐴 + i))) = (((2 · i) / (𝐴 + i)) − 1))
9450, 91, 933eqtrd 2783 . 2 (𝐴 ∈ dom arctan → ((exp‘(log‘(1 + (i · 𝐴)))) / (exp‘(log‘(1 − (i · 𝐴))))) = (((2 · i) / (𝐴 + i)) − 1))
9543, 45, 943eqtrd 2783 1 (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (((2 · i) / (𝐴 + i)) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wne 2944  dom cdm 5588  cfv 6430  (class class class)co 7268  cc 10853  0cc0 10855  1c1 10856  ici 10857   + caddc 10858   · cmul 10860  cmin 11188  -cneg 11189   / cdiv 11615  2c2 12011  expce 15752  logclog 25691  arctancatan 25995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933  ax-addf 10934  ax-mulf 10935
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-supp 7962  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-er 8472  df-map 8591  df-pm 8592  df-ixp 8660  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fsupp 9090  df-fi 9131  df-sup 9162  df-inf 9163  df-oi 9230  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-ioo 13065  df-ioc 13066  df-ico 13067  df-icc 13068  df-fz 13222  df-fzo 13365  df-fl 13493  df-mod 13571  df-seq 13703  df-exp 13764  df-fac 13969  df-bc 13998  df-hash 14026  df-shft 14759  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-limsup 15161  df-clim 15178  df-rlim 15179  df-sum 15379  df-ef 15758  df-sin 15760  df-cos 15761  df-pi 15763  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-starv 16958  df-sca 16959  df-vsca 16960  df-ip 16961  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-hom 16967  df-cco 16968  df-rest 17114  df-topn 17115  df-0g 17133  df-gsum 17134  df-topgen 17135  df-pt 17136  df-prds 17139  df-xrs 17194  df-qtop 17199  df-imas 17200  df-xps 17202  df-mre 17276  df-mrc 17277  df-acs 17279  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-submnd 18412  df-mulg 18682  df-cntz 18904  df-cmn 19369  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-fbas 20575  df-fg 20576  df-cnfld 20579  df-top 22024  df-topon 22041  df-topsp 22063  df-bases 22077  df-cld 22151  df-ntr 22152  df-cls 22153  df-nei 22230  df-lp 22268  df-perf 22269  df-cn 22359  df-cnp 22360  df-haus 22447  df-tx 22694  df-hmeo 22887  df-fil 22978  df-fm 23070  df-flim 23071  df-flf 23072  df-xms 23454  df-ms 23455  df-tms 23456  df-cncf 24022  df-limc 25011  df-dv 25012  df-log 25693  df-atan 25998
This theorem is referenced by:  tanatan  26050
  Copyright terms: Public domain W3C validator