MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sineq0 Structured version   Visualization version   GIF version

Theorem sineq0 25585
Description: A complex number whose sine is zero is an integer multiple of π. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.)
Assertion
Ref Expression
sineq0 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))

Proof of Theorem sineq0
StepHypRef Expression
1 sinval 15759 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
21eqeq1d 2740 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0))
3 ax-icn 10861 . . . . . . . . . . . . . . . . . . . 20 i ∈ ℂ
4 mulcl 10886 . . . . . . . . . . . . . . . . . . . 20 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
53, 4mpan 686 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
6 efcl 15720 . . . . . . . . . . . . . . . . . . 19 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
75, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
8 negicn 11152 . . . . . . . . . . . . . . . . . . . 20 -i ∈ ℂ
9 mulcl 10886 . . . . . . . . . . . . . . . . . . . 20 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
108, 9mpan 686 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
11 efcl 15720 . . . . . . . . . . . . . . . . . . 19 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
1210, 11syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
137, 12subcld 11262 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
14 2mulicn 12126 . . . . . . . . . . . . . . . . . 18 (2 · i) ∈ ℂ
15 2muline0 12127 . . . . . . . . . . . . . . . . . 18 (2 · i) ≠ 0
16 diveq0 11573 . . . . . . . . . . . . . . . . . 18 ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
1714, 15, 16mp3an23 1451 . . . . . . . . . . . . . . . . 17 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
1813, 17syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
197, 12subeq0ad 11272 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
202, 18, 193bitrd 304 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
21 oveq2 7263 . . . . . . . . . . . . . . . 16 ((exp‘(i · 𝐴)) = (exp‘(-i · 𝐴)) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
22 2cn 11978 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
23 mul12 11070 . . . . . . . . . . . . . . . . . . . . . 22 ((i ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · (2 · 𝐴)) = (2 · (i · 𝐴)))
243, 22, 23mp3an12 1449 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → (i · (2 · 𝐴)) = (2 · (i · 𝐴)))
2552timesd 12146 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
2624, 25eqtrd 2778 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (i · (2 · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
2726fveq2d 6760 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘(i · (2 · 𝐴))) = (exp‘((i · 𝐴) + (i · 𝐴))))
28 efadd 15731 . . . . . . . . . . . . . . . . . . . 20 (((i · 𝐴) ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
295, 5, 28syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
3027, 29eqtr2d 2779 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = (exp‘(i · (2 · 𝐴))))
31 efadd 15731 . . . . . . . . . . . . . . . . . . . 20 (((i · 𝐴) ∈ ℂ ∧ (-i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
325, 10, 31syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
333negidi 11220 . . . . . . . . . . . . . . . . . . . . . . 23 (i + -i) = 0
3433oveq1i 7265 . . . . . . . . . . . . . . . . . . . . . 22 ((i + -i) · 𝐴) = (0 · 𝐴)
35 adddir 10897 . . . . . . . . . . . . . . . . . . . . . . 23 ((i ∈ ℂ ∧ -i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i + -i) · 𝐴) = ((i · 𝐴) + (-i · 𝐴)))
363, 8, 35mp3an12 1449 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → ((i + -i) · 𝐴) = ((i · 𝐴) + (-i · 𝐴)))
37 mul02 11083 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
3834, 36, 373eqtr3a 2803 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → ((i · 𝐴) + (-i · 𝐴)) = 0)
3938fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = (exp‘0))
40 ef0 15728 . . . . . . . . . . . . . . . . . . . 20 (exp‘0) = 1
4139, 40eqtrdi 2795 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = 1)
4232, 41eqtr3d 2780 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) = 1)
4330, 42eqeq12d 2754 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) ↔ (exp‘(i · (2 · 𝐴))) = 1))
44 fveq2 6756 . . . . . . . . . . . . . . . . 17 ((exp‘(i · (2 · 𝐴))) = 1 → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1))
4543, 44syl6bi 252 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1)))
4621, 45syl5 34 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = (exp‘(-i · 𝐴)) → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1)))
4720, 46sylbid 239 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1)))
48 abs1 14937 . . . . . . . . . . . . . . . 16 (abs‘1) = 1
4948eqeq2i 2751 . . . . . . . . . . . . . . 15 ((abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1) ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1)
50 2re 11977 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
51 2ne0 12007 . . . . . . . . . . . . . . . . 17 2 ≠ 0
52 mulre 14760 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 2 ∈ ℝ ∧ 2 ≠ 0) → (𝐴 ∈ ℝ ↔ (2 · 𝐴) ∈ ℝ))
5350, 51, 52mp3an23 1451 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (2 · 𝐴) ∈ ℝ))
54 mulcl 10886 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
5522, 54mpan 686 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (2 · 𝐴) ∈ ℂ)
56 absefib 15835 . . . . . . . . . . . . . . . . 17 ((2 · 𝐴) ∈ ℂ → ((2 · 𝐴) ∈ ℝ ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1))
5755, 56syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((2 · 𝐴) ∈ ℝ ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1))
5853, 57bitr2d 279 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · (2 · 𝐴)))) = 1 ↔ 𝐴 ∈ ℝ))
5949, 58syl5bb 282 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1) ↔ 𝐴 ∈ ℝ))
6047, 59sylibd 238 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 → 𝐴 ∈ ℝ))
6160imp 406 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝐴 ∈ ℝ)
62 pirp 25523 . . . . . . . . . . . 12 π ∈ ℝ+
63 modval 13519 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
6461, 62, 63sylancl 585 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
65 picn 25521 . . . . . . . . . . . . 13 π ∈ ℂ
66 pire 25520 . . . . . . . . . . . . . . . . 17 π ∈ ℝ
67 pipos 25522 . . . . . . . . . . . . . . . . . 18 0 < π
6866, 67gt0ne0ii 11441 . . . . . . . . . . . . . . . . 17 π ≠ 0
69 redivcl 11624 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ π ≠ 0) → (𝐴 / π) ∈ ℝ)
7066, 68, 69mp3an23 1451 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (𝐴 / π) ∈ ℝ)
7161, 70syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / π) ∈ ℝ)
7271flcld 13446 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / π)) ∈ ℤ)
7372zcnd 12356 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / π)) ∈ ℂ)
74 mulcl 10886 . . . . . . . . . . . . 13 ((π ∈ ℂ ∧ (⌊‘(𝐴 / π)) ∈ ℂ) → (π · (⌊‘(𝐴 / π))) ∈ ℂ)
7565, 73, 74sylancr 586 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (π · (⌊‘(𝐴 / π))) ∈ ℂ)
76 negsub 11199 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (π · (⌊‘(𝐴 / π))) ∈ ℂ) → (𝐴 + -(π · (⌊‘(𝐴 / π)))) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
7775, 76syldan 590 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + -(π · (⌊‘(𝐴 / π)))) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
78 mulcom 10888 . . . . . . . . . . . . . . 15 ((π ∈ ℂ ∧ (⌊‘(𝐴 / π)) ∈ ℂ) → (π · (⌊‘(𝐴 / π))) = ((⌊‘(𝐴 / π)) · π))
7965, 73, 78sylancr 586 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (π · (⌊‘(𝐴 / π))) = ((⌊‘(𝐴 / π)) · π))
8079negeqd 11145 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(π · (⌊‘(𝐴 / π))) = -((⌊‘(𝐴 / π)) · π))
81 mulneg1 11341 . . . . . . . . . . . . . 14 (((⌊‘(𝐴 / π)) ∈ ℂ ∧ π ∈ ℂ) → (-(⌊‘(𝐴 / π)) · π) = -((⌊‘(𝐴 / π)) · π))
8273, 65, 81sylancl 585 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) · π) = -((⌊‘(𝐴 / π)) · π))
8380, 82eqtr4d 2781 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(π · (⌊‘(𝐴 / π))) = (-(⌊‘(𝐴 / π)) · π))
8483oveq2d 7271 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + -(π · (⌊‘(𝐴 / π)))) = (𝐴 + (-(⌊‘(𝐴 / π)) · π)))
8564, 77, 843eqtr2d 2784 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) = (𝐴 + (-(⌊‘(𝐴 / π)) · π)))
8685fveq2d 6760 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 mod π)) = (sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π))))
8786fveq2d 6760 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))))
8872znegcld 12357 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(⌊‘(𝐴 / π)) ∈ ℤ)
89 abssinper 25582 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -(⌊‘(𝐴 / π)) ∈ ℤ) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) = (abs‘(sin‘𝐴)))
9088, 89syldan 590 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) = (abs‘(sin‘𝐴)))
91 simpr 484 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘𝐴) = 0)
9291fveq2d 6760 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘0))
9387, 90, 923eqtrd 2782 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = (abs‘0))
94 abs0 14925 . . . . . . 7 (abs‘0) = 0
9593, 94eqtrdi 2795 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = 0)
96 modcl 13521 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) ∈ ℝ)
9761, 62, 96sylancl 585 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) ∈ ℝ)
98 modlt 13528 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) < π)
9961, 62, 98sylancl 585 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) < π)
10097, 99jca 511 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π))
101100biantrurd 532 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) ↔ (((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π) ∧ 0 < (𝐴 mod π))))
102 0re 10908 . . . . . . . . . . . 12 0 ∈ ℝ
103 rexr 10952 . . . . . . . . . . . . 13 (0 ∈ ℝ → 0 ∈ ℝ*)
104 rexr 10952 . . . . . . . . . . . . 13 (π ∈ ℝ → π ∈ ℝ*)
105 elioo2 13049 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π)))
106103, 104, 105syl2an 595 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ π ∈ ℝ) → ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π)))
107102, 66, 106mp2an 688 . . . . . . . . . . 11 ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π))
108 3anan32 1095 . . . . . . . . . . 11 (((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π) ↔ (((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π) ∧ 0 < (𝐴 mod π)))
109107, 108bitri 274 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) ↔ (((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π) ∧ 0 < (𝐴 mod π)))
110101, 109bitr4di 288 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) ↔ (𝐴 mod π) ∈ (0(,)π)))
111 sinq12gt0 25569 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) → 0 < (sin‘(𝐴 mod π)))
112 elioore 13038 . . . . . . . . . . . 12 ((𝐴 mod π) ∈ (0(,)π) → (𝐴 mod π) ∈ ℝ)
113112resincld 15780 . . . . . . . . . . 11 ((𝐴 mod π) ∈ (0(,)π) → (sin‘(𝐴 mod π)) ∈ ℝ)
114 ltle 10994 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (sin‘(𝐴 mod π)) ∈ ℝ) → (0 < (sin‘(𝐴 mod π)) → 0 ≤ (sin‘(𝐴 mod π))))
115102, 113, 114sylancr 586 . . . . . . . . . . . 12 ((𝐴 mod π) ∈ (0(,)π) → (0 < (sin‘(𝐴 mod π)) → 0 ≤ (sin‘(𝐴 mod π))))
116111, 115mpd 15 . . . . . . . . . . 11 ((𝐴 mod π) ∈ (0(,)π) → 0 ≤ (sin‘(𝐴 mod π)))
117113, 116absidd 15062 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) → (abs‘(sin‘(𝐴 mod π))) = (sin‘(𝐴 mod π)))
118111, 117breqtrrd 5098 . . . . . . . . 9 ((𝐴 mod π) ∈ (0(,)π) → 0 < (abs‘(sin‘(𝐴 mod π))))
119110, 118syl6bi 252 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) → 0 < (abs‘(sin‘(𝐴 mod π)))))
120 ltne 11002 . . . . . . . . 9 ((0 ∈ ℝ ∧ 0 < (abs‘(sin‘(𝐴 mod π)))) → (abs‘(sin‘(𝐴 mod π))) ≠ 0)
121102, 120mpan 686 . . . . . . . 8 (0 < (abs‘(sin‘(𝐴 mod π))) → (abs‘(sin‘(𝐴 mod π))) ≠ 0)
122119, 121syl6 35 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) → (abs‘(sin‘(𝐴 mod π))) ≠ 0))
123122necon2bd 2958 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((abs‘(sin‘(𝐴 mod π))) = 0 → ¬ 0 < (𝐴 mod π)))
12495, 123mpd 15 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ 0 < (𝐴 mod π))
125 modge0 13527 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → 0 ≤ (𝐴 mod π))
12661, 62, 125sylancl 585 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 ≤ (𝐴 mod π))
127 leloe 10992 . . . . . . . 8 ((0 ∈ ℝ ∧ (𝐴 mod π) ∈ ℝ) → (0 ≤ (𝐴 mod π) ↔ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))))
128102, 97, 127sylancr 586 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 ≤ (𝐴 mod π) ↔ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))))
129126, 128mpbid 231 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)))
130129ord 860 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (¬ 0 < (𝐴 mod π) → 0 = (𝐴 mod π)))
131124, 130mpd 15 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 = (𝐴 mod π))
132131eqcomd 2744 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) = 0)
133 mod0 13524 . . . 4 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → ((𝐴 mod π) = 0 ↔ (𝐴 / π) ∈ ℤ))
13461, 62, 133sylancl 585 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((𝐴 mod π) = 0 ↔ (𝐴 / π) ∈ ℤ))
135132, 134mpbid 231 . 2 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / π) ∈ ℤ)
136 divcan1 11572 . . . . 5 ((𝐴 ∈ ℂ ∧ π ∈ ℂ ∧ π ≠ 0) → ((𝐴 / π) · π) = 𝐴)
13765, 68, 136mp3an23 1451 . . . 4 (𝐴 ∈ ℂ → ((𝐴 / π) · π) = 𝐴)
138137fveq2d 6760 . . 3 (𝐴 ∈ ℂ → (sin‘((𝐴 / π) · π)) = (sin‘𝐴))
139 sinkpi 25583 . . 3 ((𝐴 / π) ∈ ℤ → (sin‘((𝐴 / π) · π)) = 0)
140138, 139sylan9req 2800 . 2 ((𝐴 ∈ ℂ ∧ (𝐴 / π) ∈ ℤ) → (sin‘𝐴) = 0)
141135, 140impbida 797 1 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803  ici 10804   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  cz 12249  +crp 12659  (,)cioo 13008  cfl 13438   mod cmo 13517  abscabs 14873  expce 15699  sincsin 15701  πcpi 15704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  coseq1  25586  efeq1  25589  cosne0  25590  logf1o2  25710  coseq0  43295  sinaover2ne0  43299  dirker2re  43523  dirkerdenne0  43524  dirkertrigeqlem3  43531  dirkertrigeq  43532  dirkercncflem1  43534  dirkercncflem2  43535  dirkercncflem4  43537  fourierdlem103  43640  fourierdlem104  43641
  Copyright terms: Public domain W3C validator