MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sineq0 Structured version   Visualization version   GIF version

Theorem sineq0 26409
Description: A complex number whose sine is zero is an integer multiple of π. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.)
Assertion
Ref Expression
sineq0 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))

Proof of Theorem sineq0
StepHypRef Expression
1 sinval 16066 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
21eqeq1d 2731 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0))
3 ax-icn 11103 . . . . . . . . . . . . . . . . . . . 20 i ∈ ℂ
4 mulcl 11128 . . . . . . . . . . . . . . . . . . . 20 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
53, 4mpan 690 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
6 efcl 16024 . . . . . . . . . . . . . . . . . . 19 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
75, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
8 negicn 11398 . . . . . . . . . . . . . . . . . . . 20 -i ∈ ℂ
9 mulcl 11128 . . . . . . . . . . . . . . . . . . . 20 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
108, 9mpan 690 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
11 efcl 16024 . . . . . . . . . . . . . . . . . . 19 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
1210, 11syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
137, 12subcld 11509 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
14 2mulicn 12382 . . . . . . . . . . . . . . . . . 18 (2 · i) ∈ ℂ
15 2muline0 12383 . . . . . . . . . . . . . . . . . 18 (2 · i) ≠ 0
16 diveq0 11823 . . . . . . . . . . . . . . . . . 18 ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
1714, 15, 16mp3an23 1455 . . . . . . . . . . . . . . . . 17 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
1813, 17syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
197, 12subeq0ad 11519 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
202, 18, 193bitrd 305 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
21 oveq2 7377 . . . . . . . . . . . . . . . 16 ((exp‘(i · 𝐴)) = (exp‘(-i · 𝐴)) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
22 2cn 12237 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
23 mul12 11315 . . . . . . . . . . . . . . . . . . . . . 22 ((i ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · (2 · 𝐴)) = (2 · (i · 𝐴)))
243, 22, 23mp3an12 1453 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → (i · (2 · 𝐴)) = (2 · (i · 𝐴)))
2552timesd 12401 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
2624, 25eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (i · (2 · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
2726fveq2d 6844 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘(i · (2 · 𝐴))) = (exp‘((i · 𝐴) + (i · 𝐴))))
28 efadd 16036 . . . . . . . . . . . . . . . . . . . 20 (((i · 𝐴) ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
295, 5, 28syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
3027, 29eqtr2d 2765 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = (exp‘(i · (2 · 𝐴))))
31 efadd 16036 . . . . . . . . . . . . . . . . . . . 20 (((i · 𝐴) ∈ ℂ ∧ (-i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
325, 10, 31syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
333negidi 11467 . . . . . . . . . . . . . . . . . . . . . . 23 (i + -i) = 0
3433oveq1i 7379 . . . . . . . . . . . . . . . . . . . . . 22 ((i + -i) · 𝐴) = (0 · 𝐴)
35 adddir 11141 . . . . . . . . . . . . . . . . . . . . . . 23 ((i ∈ ℂ ∧ -i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i + -i) · 𝐴) = ((i · 𝐴) + (-i · 𝐴)))
363, 8, 35mp3an12 1453 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → ((i + -i) · 𝐴) = ((i · 𝐴) + (-i · 𝐴)))
37 mul02 11328 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
3834, 36, 373eqtr3a 2788 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → ((i · 𝐴) + (-i · 𝐴)) = 0)
3938fveq2d 6844 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = (exp‘0))
40 ef0 16033 . . . . . . . . . . . . . . . . . . . 20 (exp‘0) = 1
4139, 40eqtrdi 2780 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = 1)
4232, 41eqtr3d 2766 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) = 1)
4330, 42eqeq12d 2745 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) ↔ (exp‘(i · (2 · 𝐴))) = 1))
44 fveq2 6840 . . . . . . . . . . . . . . . . 17 ((exp‘(i · (2 · 𝐴))) = 1 → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1))
4543, 44biimtrdi 253 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1)))
4621, 45syl5 34 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = (exp‘(-i · 𝐴)) → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1)))
4720, 46sylbid 240 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1)))
48 abs1 15239 . . . . . . . . . . . . . . . 16 (abs‘1) = 1
4948eqeq2i 2742 . . . . . . . . . . . . . . 15 ((abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1) ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1)
50 2re 12236 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
51 2ne0 12266 . . . . . . . . . . . . . . . . 17 2 ≠ 0
52 mulre 15063 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 2 ∈ ℝ ∧ 2 ≠ 0) → (𝐴 ∈ ℝ ↔ (2 · 𝐴) ∈ ℝ))
5350, 51, 52mp3an23 1455 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (2 · 𝐴) ∈ ℝ))
54 mulcl 11128 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
5522, 54mpan 690 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (2 · 𝐴) ∈ ℂ)
56 absefib 16142 . . . . . . . . . . . . . . . . 17 ((2 · 𝐴) ∈ ℂ → ((2 · 𝐴) ∈ ℝ ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1))
5755, 56syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((2 · 𝐴) ∈ ℝ ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1))
5853, 57bitr2d 280 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · (2 · 𝐴)))) = 1 ↔ 𝐴 ∈ ℝ))
5949, 58bitrid 283 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1) ↔ 𝐴 ∈ ℝ))
6047, 59sylibd 239 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 → 𝐴 ∈ ℝ))
6160imp 406 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝐴 ∈ ℝ)
62 pirp 26346 . . . . . . . . . . . 12 π ∈ ℝ+
63 modval 13809 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
6461, 62, 63sylancl 586 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
65 picn 26343 . . . . . . . . . . . . 13 π ∈ ℂ
66 pire 26342 . . . . . . . . . . . . . . . . 17 π ∈ ℝ
67 pipos 26344 . . . . . . . . . . . . . . . . . 18 0 < π
6866, 67gt0ne0ii 11690 . . . . . . . . . . . . . . . . 17 π ≠ 0
69 redivcl 11877 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ π ≠ 0) → (𝐴 / π) ∈ ℝ)
7066, 68, 69mp3an23 1455 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (𝐴 / π) ∈ ℝ)
7161, 70syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / π) ∈ ℝ)
7271flcld 13736 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / π)) ∈ ℤ)
7372zcnd 12615 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / π)) ∈ ℂ)
74 mulcl 11128 . . . . . . . . . . . . 13 ((π ∈ ℂ ∧ (⌊‘(𝐴 / π)) ∈ ℂ) → (π · (⌊‘(𝐴 / π))) ∈ ℂ)
7565, 73, 74sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (π · (⌊‘(𝐴 / π))) ∈ ℂ)
76 negsub 11446 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (π · (⌊‘(𝐴 / π))) ∈ ℂ) → (𝐴 + -(π · (⌊‘(𝐴 / π)))) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
7775, 76syldan 591 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + -(π · (⌊‘(𝐴 / π)))) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
78 mulcom 11130 . . . . . . . . . . . . . . 15 ((π ∈ ℂ ∧ (⌊‘(𝐴 / π)) ∈ ℂ) → (π · (⌊‘(𝐴 / π))) = ((⌊‘(𝐴 / π)) · π))
7965, 73, 78sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (π · (⌊‘(𝐴 / π))) = ((⌊‘(𝐴 / π)) · π))
8079negeqd 11391 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(π · (⌊‘(𝐴 / π))) = -((⌊‘(𝐴 / π)) · π))
81 mulneg1 11590 . . . . . . . . . . . . . 14 (((⌊‘(𝐴 / π)) ∈ ℂ ∧ π ∈ ℂ) → (-(⌊‘(𝐴 / π)) · π) = -((⌊‘(𝐴 / π)) · π))
8273, 65, 81sylancl 586 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) · π) = -((⌊‘(𝐴 / π)) · π))
8380, 82eqtr4d 2767 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(π · (⌊‘(𝐴 / π))) = (-(⌊‘(𝐴 / π)) · π))
8483oveq2d 7385 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + -(π · (⌊‘(𝐴 / π)))) = (𝐴 + (-(⌊‘(𝐴 / π)) · π)))
8564, 77, 843eqtr2d 2770 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) = (𝐴 + (-(⌊‘(𝐴 / π)) · π)))
8685fveq2d 6844 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 mod π)) = (sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π))))
8786fveq2d 6844 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))))
8872znegcld 12616 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(⌊‘(𝐴 / π)) ∈ ℤ)
89 abssinper 26406 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -(⌊‘(𝐴 / π)) ∈ ℤ) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) = (abs‘(sin‘𝐴)))
9088, 89syldan 591 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) = (abs‘(sin‘𝐴)))
91 simpr 484 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘𝐴) = 0)
9291fveq2d 6844 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘0))
9387, 90, 923eqtrd 2768 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = (abs‘0))
94 abs0 15227 . . . . . . 7 (abs‘0) = 0
9593, 94eqtrdi 2780 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = 0)
96 modcl 13811 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) ∈ ℝ)
9761, 62, 96sylancl 586 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) ∈ ℝ)
98 modlt 13818 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) < π)
9961, 62, 98sylancl 586 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) < π)
10097, 99jca 511 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π))
101100biantrurd 532 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) ↔ (((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π) ∧ 0 < (𝐴 mod π))))
102 0re 11152 . . . . . . . . . . . 12 0 ∈ ℝ
103 rexr 11196 . . . . . . . . . . . . 13 (0 ∈ ℝ → 0 ∈ ℝ*)
104 rexr 11196 . . . . . . . . . . . . 13 (π ∈ ℝ → π ∈ ℝ*)
105 elioo2 13323 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π)))
106103, 104, 105syl2an 596 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ π ∈ ℝ) → ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π)))
107102, 66, 106mp2an 692 . . . . . . . . . . 11 ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π))
108 3anan32 1096 . . . . . . . . . . 11 (((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π) ↔ (((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π) ∧ 0 < (𝐴 mod π)))
109107, 108bitri 275 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) ↔ (((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π) ∧ 0 < (𝐴 mod π)))
110101, 109bitr4di 289 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) ↔ (𝐴 mod π) ∈ (0(,)π)))
111 sinq12gt0 26392 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) → 0 < (sin‘(𝐴 mod π)))
112 elioore 13312 . . . . . . . . . . . 12 ((𝐴 mod π) ∈ (0(,)π) → (𝐴 mod π) ∈ ℝ)
113112resincld 16087 . . . . . . . . . . 11 ((𝐴 mod π) ∈ (0(,)π) → (sin‘(𝐴 mod π)) ∈ ℝ)
114 ltle 11238 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (sin‘(𝐴 mod π)) ∈ ℝ) → (0 < (sin‘(𝐴 mod π)) → 0 ≤ (sin‘(𝐴 mod π))))
115102, 113, 114sylancr 587 . . . . . . . . . . . 12 ((𝐴 mod π) ∈ (0(,)π) → (0 < (sin‘(𝐴 mod π)) → 0 ≤ (sin‘(𝐴 mod π))))
116111, 115mpd 15 . . . . . . . . . . 11 ((𝐴 mod π) ∈ (0(,)π) → 0 ≤ (sin‘(𝐴 mod π)))
117113, 116absidd 15365 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) → (abs‘(sin‘(𝐴 mod π))) = (sin‘(𝐴 mod π)))
118111, 117breqtrrd 5130 . . . . . . . . 9 ((𝐴 mod π) ∈ (0(,)π) → 0 < (abs‘(sin‘(𝐴 mod π))))
119110, 118biimtrdi 253 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) → 0 < (abs‘(sin‘(𝐴 mod π)))))
120 ltne 11247 . . . . . . . . 9 ((0 ∈ ℝ ∧ 0 < (abs‘(sin‘(𝐴 mod π)))) → (abs‘(sin‘(𝐴 mod π))) ≠ 0)
121102, 120mpan 690 . . . . . . . 8 (0 < (abs‘(sin‘(𝐴 mod π))) → (abs‘(sin‘(𝐴 mod π))) ≠ 0)
122119, 121syl6 35 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) → (abs‘(sin‘(𝐴 mod π))) ≠ 0))
123122necon2bd 2941 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((abs‘(sin‘(𝐴 mod π))) = 0 → ¬ 0 < (𝐴 mod π)))
12495, 123mpd 15 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ 0 < (𝐴 mod π))
125 modge0 13817 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → 0 ≤ (𝐴 mod π))
12661, 62, 125sylancl 586 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 ≤ (𝐴 mod π))
127 leloe 11236 . . . . . . . 8 ((0 ∈ ℝ ∧ (𝐴 mod π) ∈ ℝ) → (0 ≤ (𝐴 mod π) ↔ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))))
128102, 97, 127sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 ≤ (𝐴 mod π) ↔ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))))
129126, 128mpbid 232 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)))
130129ord 864 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (¬ 0 < (𝐴 mod π) → 0 = (𝐴 mod π)))
131124, 130mpd 15 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 = (𝐴 mod π))
132131eqcomd 2735 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) = 0)
133 mod0 13814 . . . 4 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → ((𝐴 mod π) = 0 ↔ (𝐴 / π) ∈ ℤ))
13461, 62, 133sylancl 586 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((𝐴 mod π) = 0 ↔ (𝐴 / π) ∈ ℤ))
135132, 134mpbid 232 . 2 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / π) ∈ ℤ)
136 divcan1 11822 . . . . 5 ((𝐴 ∈ ℂ ∧ π ∈ ℂ ∧ π ≠ 0) → ((𝐴 / π) · π) = 𝐴)
13765, 68, 136mp3an23 1455 . . . 4 (𝐴 ∈ ℂ → ((𝐴 / π) · π) = 𝐴)
138137fveq2d 6844 . . 3 (𝐴 ∈ ℂ → (sin‘((𝐴 / π) · π)) = (sin‘𝐴))
139 sinkpi 26407 . . 3 ((𝐴 / π) ∈ ℤ → (sin‘((𝐴 / π) · π)) = 0)
140138, 139sylan9req 2785 . 2 ((𝐴 ∈ ℂ ∧ (𝐴 / π) ∈ ℤ) → (sin‘𝐴) = 0)
141135, 140impbida 800 1 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045  ici 11046   + caddc 11047   · cmul 11049  *cxr 11183   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  2c2 12217  cz 12505  +crp 12927  (,)cioo 13282  cfl 13728   mod cmo 13807  abscabs 15176  expce 16003  sincsin 16005  πcpi 16008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744
This theorem is referenced by:  coseq1  26410  efeq1  26413  cosne0  26414  logf1o2  26535  coseq0  45835  sinaover2ne0  45839  dirker2re  46063  dirkerdenne0  46064  dirkertrigeqlem3  46071  dirkertrigeq  46072  dirkercncflem1  46074  dirkercncflem2  46075  dirkercncflem4  46077  fourierdlem103  46180  fourierdlem104  46181
  Copyright terms: Public domain W3C validator