MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sineq0 Structured version   Visualization version   GIF version

Theorem sineq0 26440
Description: A complex number whose sine is zero is an integer multiple of π. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.)
Assertion
Ref Expression
sineq0 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))

Proof of Theorem sineq0
StepHypRef Expression
1 sinval 16097 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
21eqeq1d 2732 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0))
3 ax-icn 11134 . . . . . . . . . . . . . . . . . . . 20 i ∈ ℂ
4 mulcl 11159 . . . . . . . . . . . . . . . . . . . 20 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
53, 4mpan 690 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
6 efcl 16055 . . . . . . . . . . . . . . . . . . 19 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
75, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
8 negicn 11429 . . . . . . . . . . . . . . . . . . . 20 -i ∈ ℂ
9 mulcl 11159 . . . . . . . . . . . . . . . . . . . 20 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
108, 9mpan 690 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
11 efcl 16055 . . . . . . . . . . . . . . . . . . 19 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
1210, 11syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
137, 12subcld 11540 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
14 2mulicn 12413 . . . . . . . . . . . . . . . . . 18 (2 · i) ∈ ℂ
15 2muline0 12414 . . . . . . . . . . . . . . . . . 18 (2 · i) ≠ 0
16 diveq0 11854 . . . . . . . . . . . . . . . . . 18 ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
1714, 15, 16mp3an23 1455 . . . . . . . . . . . . . . . . 17 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
1813, 17syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
197, 12subeq0ad 11550 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
202, 18, 193bitrd 305 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
21 oveq2 7398 . . . . . . . . . . . . . . . 16 ((exp‘(i · 𝐴)) = (exp‘(-i · 𝐴)) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
22 2cn 12268 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
23 mul12 11346 . . . . . . . . . . . . . . . . . . . . . 22 ((i ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · (2 · 𝐴)) = (2 · (i · 𝐴)))
243, 22, 23mp3an12 1453 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → (i · (2 · 𝐴)) = (2 · (i · 𝐴)))
2552timesd 12432 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
2624, 25eqtrd 2765 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (i · (2 · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
2726fveq2d 6865 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘(i · (2 · 𝐴))) = (exp‘((i · 𝐴) + (i · 𝐴))))
28 efadd 16067 . . . . . . . . . . . . . . . . . . . 20 (((i · 𝐴) ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
295, 5, 28syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
3027, 29eqtr2d 2766 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = (exp‘(i · (2 · 𝐴))))
31 efadd 16067 . . . . . . . . . . . . . . . . . . . 20 (((i · 𝐴) ∈ ℂ ∧ (-i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
325, 10, 31syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
333negidi 11498 . . . . . . . . . . . . . . . . . . . . . . 23 (i + -i) = 0
3433oveq1i 7400 . . . . . . . . . . . . . . . . . . . . . 22 ((i + -i) · 𝐴) = (0 · 𝐴)
35 adddir 11172 . . . . . . . . . . . . . . . . . . . . . . 23 ((i ∈ ℂ ∧ -i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i + -i) · 𝐴) = ((i · 𝐴) + (-i · 𝐴)))
363, 8, 35mp3an12 1453 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → ((i + -i) · 𝐴) = ((i · 𝐴) + (-i · 𝐴)))
37 mul02 11359 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
3834, 36, 373eqtr3a 2789 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → ((i · 𝐴) + (-i · 𝐴)) = 0)
3938fveq2d 6865 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = (exp‘0))
40 ef0 16064 . . . . . . . . . . . . . . . . . . . 20 (exp‘0) = 1
4139, 40eqtrdi 2781 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = 1)
4232, 41eqtr3d 2767 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) = 1)
4330, 42eqeq12d 2746 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) ↔ (exp‘(i · (2 · 𝐴))) = 1))
44 fveq2 6861 . . . . . . . . . . . . . . . . 17 ((exp‘(i · (2 · 𝐴))) = 1 → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1))
4543, 44biimtrdi 253 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1)))
4621, 45syl5 34 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = (exp‘(-i · 𝐴)) → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1)))
4720, 46sylbid 240 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1)))
48 abs1 15270 . . . . . . . . . . . . . . . 16 (abs‘1) = 1
4948eqeq2i 2743 . . . . . . . . . . . . . . 15 ((abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1) ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1)
50 2re 12267 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
51 2ne0 12297 . . . . . . . . . . . . . . . . 17 2 ≠ 0
52 mulre 15094 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 2 ∈ ℝ ∧ 2 ≠ 0) → (𝐴 ∈ ℝ ↔ (2 · 𝐴) ∈ ℝ))
5350, 51, 52mp3an23 1455 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (2 · 𝐴) ∈ ℝ))
54 mulcl 11159 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
5522, 54mpan 690 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (2 · 𝐴) ∈ ℂ)
56 absefib 16173 . . . . . . . . . . . . . . . . 17 ((2 · 𝐴) ∈ ℂ → ((2 · 𝐴) ∈ ℝ ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1))
5755, 56syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((2 · 𝐴) ∈ ℝ ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1))
5853, 57bitr2d 280 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · (2 · 𝐴)))) = 1 ↔ 𝐴 ∈ ℝ))
5949, 58bitrid 283 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1) ↔ 𝐴 ∈ ℝ))
6047, 59sylibd 239 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 → 𝐴 ∈ ℝ))
6160imp 406 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝐴 ∈ ℝ)
62 pirp 26377 . . . . . . . . . . . 12 π ∈ ℝ+
63 modval 13840 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
6461, 62, 63sylancl 586 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
65 picn 26374 . . . . . . . . . . . . 13 π ∈ ℂ
66 pire 26373 . . . . . . . . . . . . . . . . 17 π ∈ ℝ
67 pipos 26375 . . . . . . . . . . . . . . . . . 18 0 < π
6866, 67gt0ne0ii 11721 . . . . . . . . . . . . . . . . 17 π ≠ 0
69 redivcl 11908 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ π ≠ 0) → (𝐴 / π) ∈ ℝ)
7066, 68, 69mp3an23 1455 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (𝐴 / π) ∈ ℝ)
7161, 70syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / π) ∈ ℝ)
7271flcld 13767 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / π)) ∈ ℤ)
7372zcnd 12646 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / π)) ∈ ℂ)
74 mulcl 11159 . . . . . . . . . . . . 13 ((π ∈ ℂ ∧ (⌊‘(𝐴 / π)) ∈ ℂ) → (π · (⌊‘(𝐴 / π))) ∈ ℂ)
7565, 73, 74sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (π · (⌊‘(𝐴 / π))) ∈ ℂ)
76 negsub 11477 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (π · (⌊‘(𝐴 / π))) ∈ ℂ) → (𝐴 + -(π · (⌊‘(𝐴 / π)))) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
7775, 76syldan 591 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + -(π · (⌊‘(𝐴 / π)))) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
78 mulcom 11161 . . . . . . . . . . . . . . 15 ((π ∈ ℂ ∧ (⌊‘(𝐴 / π)) ∈ ℂ) → (π · (⌊‘(𝐴 / π))) = ((⌊‘(𝐴 / π)) · π))
7965, 73, 78sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (π · (⌊‘(𝐴 / π))) = ((⌊‘(𝐴 / π)) · π))
8079negeqd 11422 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(π · (⌊‘(𝐴 / π))) = -((⌊‘(𝐴 / π)) · π))
81 mulneg1 11621 . . . . . . . . . . . . . 14 (((⌊‘(𝐴 / π)) ∈ ℂ ∧ π ∈ ℂ) → (-(⌊‘(𝐴 / π)) · π) = -((⌊‘(𝐴 / π)) · π))
8273, 65, 81sylancl 586 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) · π) = -((⌊‘(𝐴 / π)) · π))
8380, 82eqtr4d 2768 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(π · (⌊‘(𝐴 / π))) = (-(⌊‘(𝐴 / π)) · π))
8483oveq2d 7406 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + -(π · (⌊‘(𝐴 / π)))) = (𝐴 + (-(⌊‘(𝐴 / π)) · π)))
8564, 77, 843eqtr2d 2771 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) = (𝐴 + (-(⌊‘(𝐴 / π)) · π)))
8685fveq2d 6865 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 mod π)) = (sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π))))
8786fveq2d 6865 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))))
8872znegcld 12647 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(⌊‘(𝐴 / π)) ∈ ℤ)
89 abssinper 26437 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -(⌊‘(𝐴 / π)) ∈ ℤ) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) = (abs‘(sin‘𝐴)))
9088, 89syldan 591 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) = (abs‘(sin‘𝐴)))
91 simpr 484 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘𝐴) = 0)
9291fveq2d 6865 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘0))
9387, 90, 923eqtrd 2769 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = (abs‘0))
94 abs0 15258 . . . . . . 7 (abs‘0) = 0
9593, 94eqtrdi 2781 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = 0)
96 modcl 13842 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) ∈ ℝ)
9761, 62, 96sylancl 586 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) ∈ ℝ)
98 modlt 13849 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) < π)
9961, 62, 98sylancl 586 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) < π)
10097, 99jca 511 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π))
101100biantrurd 532 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) ↔ (((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π) ∧ 0 < (𝐴 mod π))))
102 0re 11183 . . . . . . . . . . . 12 0 ∈ ℝ
103 rexr 11227 . . . . . . . . . . . . 13 (0 ∈ ℝ → 0 ∈ ℝ*)
104 rexr 11227 . . . . . . . . . . . . 13 (π ∈ ℝ → π ∈ ℝ*)
105 elioo2 13354 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π)))
106103, 104, 105syl2an 596 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ π ∈ ℝ) → ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π)))
107102, 66, 106mp2an 692 . . . . . . . . . . 11 ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π))
108 3anan32 1096 . . . . . . . . . . 11 (((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π) ↔ (((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π) ∧ 0 < (𝐴 mod π)))
109107, 108bitri 275 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) ↔ (((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π) ∧ 0 < (𝐴 mod π)))
110101, 109bitr4di 289 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) ↔ (𝐴 mod π) ∈ (0(,)π)))
111 sinq12gt0 26423 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) → 0 < (sin‘(𝐴 mod π)))
112 elioore 13343 . . . . . . . . . . . 12 ((𝐴 mod π) ∈ (0(,)π) → (𝐴 mod π) ∈ ℝ)
113112resincld 16118 . . . . . . . . . . 11 ((𝐴 mod π) ∈ (0(,)π) → (sin‘(𝐴 mod π)) ∈ ℝ)
114 ltle 11269 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (sin‘(𝐴 mod π)) ∈ ℝ) → (0 < (sin‘(𝐴 mod π)) → 0 ≤ (sin‘(𝐴 mod π))))
115102, 113, 114sylancr 587 . . . . . . . . . . . 12 ((𝐴 mod π) ∈ (0(,)π) → (0 < (sin‘(𝐴 mod π)) → 0 ≤ (sin‘(𝐴 mod π))))
116111, 115mpd 15 . . . . . . . . . . 11 ((𝐴 mod π) ∈ (0(,)π) → 0 ≤ (sin‘(𝐴 mod π)))
117113, 116absidd 15396 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) → (abs‘(sin‘(𝐴 mod π))) = (sin‘(𝐴 mod π)))
118111, 117breqtrrd 5138 . . . . . . . . 9 ((𝐴 mod π) ∈ (0(,)π) → 0 < (abs‘(sin‘(𝐴 mod π))))
119110, 118biimtrdi 253 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) → 0 < (abs‘(sin‘(𝐴 mod π)))))
120 ltne 11278 . . . . . . . . 9 ((0 ∈ ℝ ∧ 0 < (abs‘(sin‘(𝐴 mod π)))) → (abs‘(sin‘(𝐴 mod π))) ≠ 0)
121102, 120mpan 690 . . . . . . . 8 (0 < (abs‘(sin‘(𝐴 mod π))) → (abs‘(sin‘(𝐴 mod π))) ≠ 0)
122119, 121syl6 35 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) → (abs‘(sin‘(𝐴 mod π))) ≠ 0))
123122necon2bd 2942 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((abs‘(sin‘(𝐴 mod π))) = 0 → ¬ 0 < (𝐴 mod π)))
12495, 123mpd 15 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ 0 < (𝐴 mod π))
125 modge0 13848 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → 0 ≤ (𝐴 mod π))
12661, 62, 125sylancl 586 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 ≤ (𝐴 mod π))
127 leloe 11267 . . . . . . . 8 ((0 ∈ ℝ ∧ (𝐴 mod π) ∈ ℝ) → (0 ≤ (𝐴 mod π) ↔ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))))
128102, 97, 127sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 ≤ (𝐴 mod π) ↔ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))))
129126, 128mpbid 232 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)))
130129ord 864 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (¬ 0 < (𝐴 mod π) → 0 = (𝐴 mod π)))
131124, 130mpd 15 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 = (𝐴 mod π))
132131eqcomd 2736 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) = 0)
133 mod0 13845 . . . 4 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → ((𝐴 mod π) = 0 ↔ (𝐴 / π) ∈ ℤ))
13461, 62, 133sylancl 586 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((𝐴 mod π) = 0 ↔ (𝐴 / π) ∈ ℤ))
135132, 134mpbid 232 . 2 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / π) ∈ ℤ)
136 divcan1 11853 . . . . 5 ((𝐴 ∈ ℂ ∧ π ∈ ℂ ∧ π ≠ 0) → ((𝐴 / π) · π) = 𝐴)
13765, 68, 136mp3an23 1455 . . . 4 (𝐴 ∈ ℂ → ((𝐴 / π) · π) = 𝐴)
138137fveq2d 6865 . . 3 (𝐴 ∈ ℂ → (sin‘((𝐴 / π) · π)) = (sin‘𝐴))
139 sinkpi 26438 . . 3 ((𝐴 / π) ∈ ℤ → (sin‘((𝐴 / π) · π)) = 0)
140138, 139sylan9req 2786 . 2 ((𝐴 ∈ ℂ ∧ (𝐴 / π) ∈ ℤ) → (sin‘𝐴) = 0)
141135, 140impbida 800 1 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076  ici 11077   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  2c2 12248  cz 12536  +crp 12958  (,)cioo 13313  cfl 13759   mod cmo 13838  abscabs 15207  expce 16034  sincsin 16036  πcpi 16039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  coseq1  26441  efeq1  26444  cosne0  26445  logf1o2  26566  coseq0  45869  sinaover2ne0  45873  dirker2re  46097  dirkerdenne0  46098  dirkertrigeqlem3  46105  dirkertrigeq  46106  dirkercncflem1  46108  dirkercncflem2  46109  dirkercncflem4  46111  fourierdlem103  46214  fourierdlem104  46215
  Copyright terms: Public domain W3C validator