MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sineq0 Structured version   Visualization version   GIF version

Theorem sineq0 25689
Description: A complex number whose sine is zero is an integer multiple of π. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.)
Assertion
Ref Expression
sineq0 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))

Proof of Theorem sineq0
StepHypRef Expression
1 sinval 15840 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
21eqeq1d 2741 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0))
3 ax-icn 10939 . . . . . . . . . . . . . . . . . . . 20 i ∈ ℂ
4 mulcl 10964 . . . . . . . . . . . . . . . . . . . 20 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
53, 4mpan 687 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
6 efcl 15801 . . . . . . . . . . . . . . . . . . 19 ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
75, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
8 negicn 11231 . . . . . . . . . . . . . . . . . . . 20 -i ∈ ℂ
9 mulcl 10964 . . . . . . . . . . . . . . . . . . . 20 ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ)
108, 9mpan 687 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
11 efcl 15801 . . . . . . . . . . . . . . . . . . 19 ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
1210, 11syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
137, 12subcld 11341 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
14 2mulicn 12205 . . . . . . . . . . . . . . . . . 18 (2 · i) ∈ ℂ
15 2muline0 12206 . . . . . . . . . . . . . . . . . 18 (2 · i) ≠ 0
16 diveq0 11652 . . . . . . . . . . . . . . . . . 18 ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ ∧ (2 · i) ∈ ℂ ∧ (2 · i) ≠ 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
1714, 15, 16mp3an23 1452 . . . . . . . . . . . . . . . . 17 (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
1813, 17syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
197, 12subeq0ad 11351 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
202, 18, 193bitrd 305 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
21 oveq2 7292 . . . . . . . . . . . . . . . 16 ((exp‘(i · 𝐴)) = (exp‘(-i · 𝐴)) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
22 2cn 12057 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
23 mul12 11149 . . . . . . . . . . . . . . . . . . . . . 22 ((i ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · (2 · 𝐴)) = (2 · (i · 𝐴)))
243, 22, 23mp3an12 1450 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → (i · (2 · 𝐴)) = (2 · (i · 𝐴)))
2552timesd 12225 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
2624, 25eqtrd 2779 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (i · (2 · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
2726fveq2d 6787 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘(i · (2 · 𝐴))) = (exp‘((i · 𝐴) + (i · 𝐴))))
28 efadd 15812 . . . . . . . . . . . . . . . . . . . 20 (((i · 𝐴) ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
295, 5, 28syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
3027, 29eqtr2d 2780 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = (exp‘(i · (2 · 𝐴))))
31 efadd 15812 . . . . . . . . . . . . . . . . . . . 20 (((i · 𝐴) ∈ ℂ ∧ (-i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
325, 10, 31syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
333negidi 11299 . . . . . . . . . . . . . . . . . . . . . . 23 (i + -i) = 0
3433oveq1i 7294 . . . . . . . . . . . . . . . . . . . . . 22 ((i + -i) · 𝐴) = (0 · 𝐴)
35 adddir 10975 . . . . . . . . . . . . . . . . . . . . . . 23 ((i ∈ ℂ ∧ -i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i + -i) · 𝐴) = ((i · 𝐴) + (-i · 𝐴)))
363, 8, 35mp3an12 1450 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → ((i + -i) · 𝐴) = ((i · 𝐴) + (-i · 𝐴)))
37 mul02 11162 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
3834, 36, 373eqtr3a 2803 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ ℂ → ((i · 𝐴) + (-i · 𝐴)) = 0)
3938fveq2d 6787 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = (exp‘0))
40 ef0 15809 . . . . . . . . . . . . . . . . . . . 20 (exp‘0) = 1
4139, 40eqtrdi 2795 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = 1)
4232, 41eqtr3d 2781 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) = 1)
4330, 42eqeq12d 2755 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) ↔ (exp‘(i · (2 · 𝐴))) = 1))
44 fveq2 6783 . . . . . . . . . . . . . . . . 17 ((exp‘(i · (2 · 𝐴))) = 1 → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1))
4543, 44syl6bi 252 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1)))
4621, 45syl5 34 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = (exp‘(-i · 𝐴)) → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1)))
4720, 46sylbid 239 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1)))
48 abs1 15018 . . . . . . . . . . . . . . . 16 (abs‘1) = 1
4948eqeq2i 2752 . . . . . . . . . . . . . . 15 ((abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1) ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1)
50 2re 12056 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
51 2ne0 12086 . . . . . . . . . . . . . . . . 17 2 ≠ 0
52 mulre 14841 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 2 ∈ ℝ ∧ 2 ≠ 0) → (𝐴 ∈ ℝ ↔ (2 · 𝐴) ∈ ℝ))
5350, 51, 52mp3an23 1452 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (2 · 𝐴) ∈ ℝ))
54 mulcl 10964 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
5522, 54mpan 687 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (2 · 𝐴) ∈ ℂ)
56 absefib 15916 . . . . . . . . . . . . . . . . 17 ((2 · 𝐴) ∈ ℂ → ((2 · 𝐴) ∈ ℝ ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1))
5755, 56syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → ((2 · 𝐴) ∈ ℝ ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1))
5853, 57bitr2d 279 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · (2 · 𝐴)))) = 1 ↔ 𝐴 ∈ ℝ))
5949, 58bitrid 282 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1) ↔ 𝐴 ∈ ℝ))
6047, 59sylibd 238 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 → 𝐴 ∈ ℝ))
6160imp 407 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝐴 ∈ ℝ)
62 pirp 25627 . . . . . . . . . . . 12 π ∈ ℝ+
63 modval 13600 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
6461, 62, 63sylancl 586 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
65 picn 25625 . . . . . . . . . . . . 13 π ∈ ℂ
66 pire 25624 . . . . . . . . . . . . . . . . 17 π ∈ ℝ
67 pipos 25626 . . . . . . . . . . . . . . . . . 18 0 < π
6866, 67gt0ne0ii 11520 . . . . . . . . . . . . . . . . 17 π ≠ 0
69 redivcl 11703 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ π ≠ 0) → (𝐴 / π) ∈ ℝ)
7066, 68, 69mp3an23 1452 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (𝐴 / π) ∈ ℝ)
7161, 70syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / π) ∈ ℝ)
7271flcld 13527 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / π)) ∈ ℤ)
7372zcnd 12436 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / π)) ∈ ℂ)
74 mulcl 10964 . . . . . . . . . . . . 13 ((π ∈ ℂ ∧ (⌊‘(𝐴 / π)) ∈ ℂ) → (π · (⌊‘(𝐴 / π))) ∈ ℂ)
7565, 73, 74sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (π · (⌊‘(𝐴 / π))) ∈ ℂ)
76 negsub 11278 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (π · (⌊‘(𝐴 / π))) ∈ ℂ) → (𝐴 + -(π · (⌊‘(𝐴 / π)))) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
7775, 76syldan 591 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + -(π · (⌊‘(𝐴 / π)))) = (𝐴 − (π · (⌊‘(𝐴 / π)))))
78 mulcom 10966 . . . . . . . . . . . . . . 15 ((π ∈ ℂ ∧ (⌊‘(𝐴 / π)) ∈ ℂ) → (π · (⌊‘(𝐴 / π))) = ((⌊‘(𝐴 / π)) · π))
7965, 73, 78sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (π · (⌊‘(𝐴 / π))) = ((⌊‘(𝐴 / π)) · π))
8079negeqd 11224 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(π · (⌊‘(𝐴 / π))) = -((⌊‘(𝐴 / π)) · π))
81 mulneg1 11420 . . . . . . . . . . . . . 14 (((⌊‘(𝐴 / π)) ∈ ℂ ∧ π ∈ ℂ) → (-(⌊‘(𝐴 / π)) · π) = -((⌊‘(𝐴 / π)) · π))
8273, 65, 81sylancl 586 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / π)) · π) = -((⌊‘(𝐴 / π)) · π))
8380, 82eqtr4d 2782 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(π · (⌊‘(𝐴 / π))) = (-(⌊‘(𝐴 / π)) · π))
8483oveq2d 7300 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + -(π · (⌊‘(𝐴 / π)))) = (𝐴 + (-(⌊‘(𝐴 / π)) · π)))
8564, 77, 843eqtr2d 2785 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) = (𝐴 + (-(⌊‘(𝐴 / π)) · π)))
8685fveq2d 6787 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 mod π)) = (sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π))))
8786fveq2d 6787 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))))
8872znegcld 12437 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(⌊‘(𝐴 / π)) ∈ ℤ)
89 abssinper 25686 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -(⌊‘(𝐴 / π)) ∈ ℤ) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) = (abs‘(sin‘𝐴)))
9088, 89syldan 591 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) = (abs‘(sin‘𝐴)))
91 simpr 485 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘𝐴) = 0)
9291fveq2d 6787 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘0))
9387, 90, 923eqtrd 2783 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = (abs‘0))
94 abs0 15006 . . . . . . 7 (abs‘0) = 0
9593, 94eqtrdi 2795 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod π))) = 0)
96 modcl 13602 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) ∈ ℝ)
9761, 62, 96sylancl 586 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) ∈ ℝ)
98 modlt 13609 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → (𝐴 mod π) < π)
9961, 62, 98sylancl 586 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) < π)
10097, 99jca 512 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π))
101100biantrurd 533 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) ↔ (((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π) ∧ 0 < (𝐴 mod π))))
102 0re 10986 . . . . . . . . . . . 12 0 ∈ ℝ
103 rexr 11030 . . . . . . . . . . . . 13 (0 ∈ ℝ → 0 ∈ ℝ*)
104 rexr 11030 . . . . . . . . . . . . 13 (π ∈ ℝ → π ∈ ℝ*)
105 elioo2 13129 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π)))
106103, 104, 105syl2an 596 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ π ∈ ℝ) → ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π)))
107102, 66, 106mp2an 689 . . . . . . . . . . 11 ((𝐴 mod π) ∈ (0(,)π) ↔ ((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π))
108 3anan32 1096 . . . . . . . . . . 11 (((𝐴 mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π) ↔ (((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π) ∧ 0 < (𝐴 mod π)))
109107, 108bitri 274 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) ↔ (((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) < π) ∧ 0 < (𝐴 mod π)))
110101, 109bitr4di 289 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) ↔ (𝐴 mod π) ∈ (0(,)π)))
111 sinq12gt0 25673 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) → 0 < (sin‘(𝐴 mod π)))
112 elioore 13118 . . . . . . . . . . . 12 ((𝐴 mod π) ∈ (0(,)π) → (𝐴 mod π) ∈ ℝ)
113112resincld 15861 . . . . . . . . . . 11 ((𝐴 mod π) ∈ (0(,)π) → (sin‘(𝐴 mod π)) ∈ ℝ)
114 ltle 11072 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (sin‘(𝐴 mod π)) ∈ ℝ) → (0 < (sin‘(𝐴 mod π)) → 0 ≤ (sin‘(𝐴 mod π))))
115102, 113, 114sylancr 587 . . . . . . . . . . . 12 ((𝐴 mod π) ∈ (0(,)π) → (0 < (sin‘(𝐴 mod π)) → 0 ≤ (sin‘(𝐴 mod π))))
116111, 115mpd 15 . . . . . . . . . . 11 ((𝐴 mod π) ∈ (0(,)π) → 0 ≤ (sin‘(𝐴 mod π)))
117113, 116absidd 15143 . . . . . . . . . 10 ((𝐴 mod π) ∈ (0(,)π) → (abs‘(sin‘(𝐴 mod π))) = (sin‘(𝐴 mod π)))
118111, 117breqtrrd 5103 . . . . . . . . 9 ((𝐴 mod π) ∈ (0(,)π) → 0 < (abs‘(sin‘(𝐴 mod π))))
119110, 118syl6bi 252 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) → 0 < (abs‘(sin‘(𝐴 mod π)))))
120 ltne 11081 . . . . . . . . 9 ((0 ∈ ℝ ∧ 0 < (abs‘(sin‘(𝐴 mod π)))) → (abs‘(sin‘(𝐴 mod π))) ≠ 0)
121102, 120mpan 687 . . . . . . . 8 (0 < (abs‘(sin‘(𝐴 mod π))) → (abs‘(sin‘(𝐴 mod π))) ≠ 0)
122119, 121syl6 35 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) → (abs‘(sin‘(𝐴 mod π))) ≠ 0))
123122necon2bd 2960 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((abs‘(sin‘(𝐴 mod π))) = 0 → ¬ 0 < (𝐴 mod π)))
12495, 123mpd 15 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ 0 < (𝐴 mod π))
125 modge0 13608 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → 0 ≤ (𝐴 mod π))
12661, 62, 125sylancl 586 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 ≤ (𝐴 mod π))
127 leloe 11070 . . . . . . . 8 ((0 ∈ ℝ ∧ (𝐴 mod π) ∈ ℝ) → (0 ≤ (𝐴 mod π) ↔ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))))
128102, 97, 127sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 ≤ (𝐴 mod π) ↔ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))))
129126, 128mpbid 231 . . . . . 6 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)))
130129ord 861 . . . . 5 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (¬ 0 < (𝐴 mod π) → 0 = (𝐴 mod π)))
131124, 130mpd 15 . . . 4 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 = (𝐴 mod π))
132131eqcomd 2745 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod π) = 0)
133 mod0 13605 . . . 4 ((𝐴 ∈ ℝ ∧ π ∈ ℝ+) → ((𝐴 mod π) = 0 ↔ (𝐴 / π) ∈ ℤ))
13461, 62, 133sylancl 586 . . 3 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((𝐴 mod π) = 0 ↔ (𝐴 / π) ∈ ℤ))
135132, 134mpbid 231 . 2 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / π) ∈ ℤ)
136 divcan1 11651 . . . . 5 ((𝐴 ∈ ℂ ∧ π ∈ ℂ ∧ π ≠ 0) → ((𝐴 / π) · π) = 𝐴)
13765, 68, 136mp3an23 1452 . . . 4 (𝐴 ∈ ℂ → ((𝐴 / π) · π) = 𝐴)
138137fveq2d 6787 . . 3 (𝐴 ∈ ℂ → (sin‘((𝐴 / π) · π)) = (sin‘𝐴))
139 sinkpi 25687 . . 3 ((𝐴 / π) ∈ ℤ → (sin‘((𝐴 / π) · π)) = 0)
140138, 139sylan9req 2800 . 2 ((𝐴 ∈ ℂ ∧ (𝐴 / π) ∈ ℤ) → (sin‘𝐴) = 0)
141135, 140impbida 798 1 (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2107  wne 2944   class class class wbr 5075  cfv 6437  (class class class)co 7284  cc 10878  cr 10879  0cc0 10880  1c1 10881  ici 10882   + caddc 10883   · cmul 10885  *cxr 11017   < clt 11018  cle 11019  cmin 11214  -cneg 11215   / cdiv 11641  2c2 12037  cz 12328  +crp 12739  (,)cioo 13088  cfl 13519   mod cmo 13598  abscabs 14954  expce 15780  sincsin 15782  πcpi 15785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ioc 13093  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-mod 13599  df-seq 13731  df-exp 13792  df-fac 13997  df-bc 14026  df-hash 14054  df-shft 14787  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-limsup 15189  df-clim 15206  df-rlim 15207  df-sum 15407  df-ef 15786  df-sin 15788  df-cos 15789  df-pi 15791  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-haus 22475  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050  df-limc 25039  df-dv 25040
This theorem is referenced by:  coseq1  25690  efeq1  25693  cosne0  25694  logf1o2  25814  coseq0  43412  sinaover2ne0  43416  dirker2re  43640  dirkerdenne0  43641  dirkertrigeqlem3  43648  dirkertrigeq  43649  dirkercncflem1  43651  dirkercncflem2  43652  dirkercncflem4  43654  fourierdlem103  43757  fourierdlem104  43758
  Copyright terms: Public domain W3C validator