MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanatan Structured version   Visualization version   GIF version

Theorem tanatan 26977
Description: The arctangent function is an inverse to tan. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
tanatan (𝐴 ∈ dom arctan → (tan‘(arctan‘𝐴)) = 𝐴)

Proof of Theorem tanatan
StepHypRef Expression
1 atancl 26939 . . 3 (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ)
2 2efiatan 26976 . . . . . 6 (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (((2 · i) / (𝐴 + i)) − 1))
32oveq1d 7446 . . . . 5 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) + 1) = ((((2 · i) / (𝐴 + i)) − 1) + 1))
4 2mulicn 12487 . . . . . . . 8 (2 · i) ∈ ℂ
54a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → (2 · i) ∈ ℂ)
6 atandm 26934 . . . . . . . . 9 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
76simp1bi 1144 . . . . . . . 8 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
8 ax-icn 11212 . . . . . . . 8 i ∈ ℂ
9 addcl 11235 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 + i) ∈ ℂ)
107, 8, 9sylancl 586 . . . . . . 7 (𝐴 ∈ dom arctan → (𝐴 + i) ∈ ℂ)
11 subneg 11556 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 − -i) = (𝐴 + i))
127, 8, 11sylancl 586 . . . . . . . 8 (𝐴 ∈ dom arctan → (𝐴 − -i) = (𝐴 + i))
136simp2bi 1145 . . . . . . . . 9 (𝐴 ∈ dom arctan → 𝐴 ≠ -i)
148negcli 11575 . . . . . . . . . 10 -i ∈ ℂ
15 subeq0 11533 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ -i ∈ ℂ) → ((𝐴 − -i) = 0 ↔ 𝐴 = -i))
1615necon3bid 2983 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ -i ∈ ℂ) → ((𝐴 − -i) ≠ 0 ↔ 𝐴 ≠ -i))
177, 14, 16sylancl 586 . . . . . . . . 9 (𝐴 ∈ dom arctan → ((𝐴 − -i) ≠ 0 ↔ 𝐴 ≠ -i))
1813, 17mpbird 257 . . . . . . . 8 (𝐴 ∈ dom arctan → (𝐴 − -i) ≠ 0)
1912, 18eqnetrrd 3007 . . . . . . 7 (𝐴 ∈ dom arctan → (𝐴 + i) ≠ 0)
205, 10, 19divcld 12041 . . . . . 6 (𝐴 ∈ dom arctan → ((2 · i) / (𝐴 + i)) ∈ ℂ)
21 ax-1cn 11211 . . . . . 6 1 ∈ ℂ
22 npcan 11515 . . . . . 6 ((((2 · i) / (𝐴 + i)) ∈ ℂ ∧ 1 ∈ ℂ) → ((((2 · i) / (𝐴 + i)) − 1) + 1) = ((2 · i) / (𝐴 + i)))
2320, 21, 22sylancl 586 . . . . 5 (𝐴 ∈ dom arctan → ((((2 · i) / (𝐴 + i)) − 1) + 1) = ((2 · i) / (𝐴 + i)))
243, 23eqtrd 2775 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) + 1) = ((2 · i) / (𝐴 + i)))
25 2muline0 12488 . . . . . 6 (2 · i) ≠ 0
2625a1i 11 . . . . 5 (𝐴 ∈ dom arctan → (2 · i) ≠ 0)
275, 10, 26, 19divne0d 12057 . . . 4 (𝐴 ∈ dom arctan → ((2 · i) / (𝐴 + i)) ≠ 0)
2824, 27eqnetrd 3006 . . 3 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) + 1) ≠ 0)
29 tanval3 16167 . . 3 (((arctan‘𝐴) ∈ ℂ ∧ ((exp‘(2 · (i · (arctan‘𝐴)))) + 1) ≠ 0) → (tan‘(arctan‘𝐴)) = (((exp‘(2 · (i · (arctan‘𝐴)))) − 1) / (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1))))
301, 28, 29syl2anc 584 . 2 (𝐴 ∈ dom arctan → (tan‘(arctan‘𝐴)) = (((exp‘(2 · (i · (arctan‘𝐴)))) − 1) / (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1))))
312oveq1d 7446 . . . . . 6 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) − 1) = ((((2 · i) / (𝐴 + i)) − 1) − 1))
3221a1i 11 . . . . . . . 8 (𝐴 ∈ dom arctan → 1 ∈ ℂ)
3320, 32, 32subsub4d 11649 . . . . . . 7 (𝐴 ∈ dom arctan → ((((2 · i) / (𝐴 + i)) − 1) − 1) = (((2 · i) / (𝐴 + i)) − (1 + 1)))
34 df-2 12327 . . . . . . . 8 2 = (1 + 1)
3534oveq2i 7442 . . . . . . 7 (((2 · i) / (𝐴 + i)) − 2) = (((2 · i) / (𝐴 + i)) − (1 + 1))
3633, 35eqtr4di 2793 . . . . . 6 (𝐴 ∈ dom arctan → ((((2 · i) / (𝐴 + i)) − 1) − 1) = (((2 · i) / (𝐴 + i)) − 2))
3731, 36eqtrd 2775 . . . . 5 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) − 1) = (((2 · i) / (𝐴 + i)) − 2))
38 2cn 12339 . . . . . . . 8 2 ∈ ℂ
39 mulcl 11237 . . . . . . . 8 ((2 ∈ ℂ ∧ (𝐴 + i) ∈ ℂ) → (2 · (𝐴 + i)) ∈ ℂ)
4038, 10, 39sylancr 587 . . . . . . 7 (𝐴 ∈ dom arctan → (2 · (𝐴 + i)) ∈ ℂ)
415, 40, 10, 19divsubdird 12080 . . . . . 6 (𝐴 ∈ dom arctan → (((2 · i) − (2 · (𝐴 + i))) / (𝐴 + i)) = (((2 · i) / (𝐴 + i)) − ((2 · (𝐴 + i)) / (𝐴 + i))))
42 mulneg12 11699 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-2 · 𝐴) = (2 · -𝐴))
4338, 7, 42sylancr 587 . . . . . . . 8 (𝐴 ∈ dom arctan → (-2 · 𝐴) = (2 · -𝐴))
44 negsub 11555 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i + -𝐴) = (i − 𝐴))
458, 7, 44sylancr 587 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (i + -𝐴) = (i − 𝐴))
4645oveq1d 7446 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((i + -𝐴) − i) = ((i − 𝐴) − i))
477negcld 11605 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → -𝐴 ∈ ℂ)
48 pncan2 11513 . . . . . . . . . . 11 ((i ∈ ℂ ∧ -𝐴 ∈ ℂ) → ((i + -𝐴) − i) = -𝐴)
498, 47, 48sylancr 587 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((i + -𝐴) − i) = -𝐴)
508a1i 11 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → i ∈ ℂ)
5150, 7, 50subsub4d 11649 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((i − 𝐴) − i) = (i − (𝐴 + i)))
5246, 49, 513eqtr3rd 2784 . . . . . . . . 9 (𝐴 ∈ dom arctan → (i − (𝐴 + i)) = -𝐴)
5352oveq2d 7447 . . . . . . . 8 (𝐴 ∈ dom arctan → (2 · (i − (𝐴 + i))) = (2 · -𝐴))
5438a1i 11 . . . . . . . . 9 (𝐴 ∈ dom arctan → 2 ∈ ℂ)
5554, 50, 10subdid 11717 . . . . . . . 8 (𝐴 ∈ dom arctan → (2 · (i − (𝐴 + i))) = ((2 · i) − (2 · (𝐴 + i))))
5643, 53, 553eqtr2rd 2782 . . . . . . 7 (𝐴 ∈ dom arctan → ((2 · i) − (2 · (𝐴 + i))) = (-2 · 𝐴))
5756oveq1d 7446 . . . . . 6 (𝐴 ∈ dom arctan → (((2 · i) − (2 · (𝐴 + i))) / (𝐴 + i)) = ((-2 · 𝐴) / (𝐴 + i)))
5854, 10, 19divcan4d 12047 . . . . . . 7 (𝐴 ∈ dom arctan → ((2 · (𝐴 + i)) / (𝐴 + i)) = 2)
5958oveq2d 7447 . . . . . 6 (𝐴 ∈ dom arctan → (((2 · i) / (𝐴 + i)) − ((2 · (𝐴 + i)) / (𝐴 + i))) = (((2 · i) / (𝐴 + i)) − 2))
6041, 57, 593eqtr3d 2783 . . . . 5 (𝐴 ∈ dom arctan → ((-2 · 𝐴) / (𝐴 + i)) = (((2 · i) / (𝐴 + i)) − 2))
6137, 60eqtr4d 2778 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) − 1) = ((-2 · 𝐴) / (𝐴 + i)))
6224oveq2d 7447 . . . . 5 (𝐴 ∈ dom arctan → (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1)) = (i · ((2 · i) / (𝐴 + i))))
638, 38, 8mul12i 11454 . . . . . . . 8 (i · (2 · i)) = (2 · (i · i))
64 ixi 11890 . . . . . . . . 9 (i · i) = -1
6564oveq2i 7442 . . . . . . . 8 (2 · (i · i)) = (2 · -1)
6621negcli 11575 . . . . . . . . 9 -1 ∈ ℂ
6738mulm1i 11706 . . . . . . . . 9 (-1 · 2) = -2
6866, 38, 67mulcomli 11268 . . . . . . . 8 (2 · -1) = -2
6963, 65, 683eqtri 2767 . . . . . . 7 (i · (2 · i)) = -2
7069oveq1i 7441 . . . . . 6 ((i · (2 · i)) / (𝐴 + i)) = (-2 / (𝐴 + i))
7150, 5, 10, 19divassd 12076 . . . . . 6 (𝐴 ∈ dom arctan → ((i · (2 · i)) / (𝐴 + i)) = (i · ((2 · i) / (𝐴 + i))))
7270, 71eqtr3id 2789 . . . . 5 (𝐴 ∈ dom arctan → (-2 / (𝐴 + i)) = (i · ((2 · i) / (𝐴 + i))))
7362, 72eqtr4d 2778 . . . 4 (𝐴 ∈ dom arctan → (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1)) = (-2 / (𝐴 + i)))
7461, 73oveq12d 7449 . . 3 (𝐴 ∈ dom arctan → (((exp‘(2 · (i · (arctan‘𝐴)))) − 1) / (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1))) = (((-2 · 𝐴) / (𝐴 + i)) / (-2 / (𝐴 + i))))
7538negcli 11575 . . . . . 6 -2 ∈ ℂ
76 mulcl 11237 . . . . . 6 ((-2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-2 · 𝐴) ∈ ℂ)
7775, 7, 76sylancr 587 . . . . 5 (𝐴 ∈ dom arctan → (-2 · 𝐴) ∈ ℂ)
7875a1i 11 . . . . 5 (𝐴 ∈ dom arctan → -2 ∈ ℂ)
79 2ne0 12368 . . . . . . 7 2 ≠ 0
8038, 79negne0i 11582 . . . . . 6 -2 ≠ 0
8180a1i 11 . . . . 5 (𝐴 ∈ dom arctan → -2 ≠ 0)
8277, 78, 10, 81, 19divcan7d 12069 . . . 4 (𝐴 ∈ dom arctan → (((-2 · 𝐴) / (𝐴 + i)) / (-2 / (𝐴 + i))) = ((-2 · 𝐴) / -2))
837, 78, 81divcan3d 12046 . . . 4 (𝐴 ∈ dom arctan → ((-2 · 𝐴) / -2) = 𝐴)
8482, 83eqtrd 2775 . . 3 (𝐴 ∈ dom arctan → (((-2 · 𝐴) / (𝐴 + i)) / (-2 / (𝐴 + i))) = 𝐴)
8574, 84eqtrd 2775 . 2 (𝐴 ∈ dom arctan → (((exp‘(2 · (i · (arctan‘𝐴)))) − 1) / (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1))) = 𝐴)
8630, 85eqtrd 2775 1 (𝐴 ∈ dom arctan → (tan‘(arctan‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  dom cdm 5689  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154  ici 11155   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491   / cdiv 11918  2c2 12319  expce 16094  tanctan 16098  arctancatan 26922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-tan 16104  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613  df-atan 26925
This theorem is referenced by:  atantanb  26982  atanord  26985
  Copyright terms: Public domain W3C validator