MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanatan Structured version   Visualization version   GIF version

Theorem tanatan 26962
Description: The arctangent function is an inverse to tan. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
tanatan (𝐴 ∈ dom arctan → (tan‘(arctan‘𝐴)) = 𝐴)

Proof of Theorem tanatan
StepHypRef Expression
1 atancl 26924 . . 3 (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ)
2 2efiatan 26961 . . . . . 6 (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (((2 · i) / (𝐴 + i)) − 1))
32oveq1d 7446 . . . . 5 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) + 1) = ((((2 · i) / (𝐴 + i)) − 1) + 1))
4 2mulicn 12489 . . . . . . . 8 (2 · i) ∈ ℂ
54a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → (2 · i) ∈ ℂ)
6 atandm 26919 . . . . . . . . 9 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
76simp1bi 1146 . . . . . . . 8 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
8 ax-icn 11214 . . . . . . . 8 i ∈ ℂ
9 addcl 11237 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 + i) ∈ ℂ)
107, 8, 9sylancl 586 . . . . . . 7 (𝐴 ∈ dom arctan → (𝐴 + i) ∈ ℂ)
11 subneg 11558 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 − -i) = (𝐴 + i))
127, 8, 11sylancl 586 . . . . . . . 8 (𝐴 ∈ dom arctan → (𝐴 − -i) = (𝐴 + i))
136simp2bi 1147 . . . . . . . . 9 (𝐴 ∈ dom arctan → 𝐴 ≠ -i)
148negcli 11577 . . . . . . . . . 10 -i ∈ ℂ
15 subeq0 11535 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ -i ∈ ℂ) → ((𝐴 − -i) = 0 ↔ 𝐴 = -i))
1615necon3bid 2985 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ -i ∈ ℂ) → ((𝐴 − -i) ≠ 0 ↔ 𝐴 ≠ -i))
177, 14, 16sylancl 586 . . . . . . . . 9 (𝐴 ∈ dom arctan → ((𝐴 − -i) ≠ 0 ↔ 𝐴 ≠ -i))
1813, 17mpbird 257 . . . . . . . 8 (𝐴 ∈ dom arctan → (𝐴 − -i) ≠ 0)
1912, 18eqnetrrd 3009 . . . . . . 7 (𝐴 ∈ dom arctan → (𝐴 + i) ≠ 0)
205, 10, 19divcld 12043 . . . . . 6 (𝐴 ∈ dom arctan → ((2 · i) / (𝐴 + i)) ∈ ℂ)
21 ax-1cn 11213 . . . . . 6 1 ∈ ℂ
22 npcan 11517 . . . . . 6 ((((2 · i) / (𝐴 + i)) ∈ ℂ ∧ 1 ∈ ℂ) → ((((2 · i) / (𝐴 + i)) − 1) + 1) = ((2 · i) / (𝐴 + i)))
2320, 21, 22sylancl 586 . . . . 5 (𝐴 ∈ dom arctan → ((((2 · i) / (𝐴 + i)) − 1) + 1) = ((2 · i) / (𝐴 + i)))
243, 23eqtrd 2777 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) + 1) = ((2 · i) / (𝐴 + i)))
25 2muline0 12490 . . . . . 6 (2 · i) ≠ 0
2625a1i 11 . . . . 5 (𝐴 ∈ dom arctan → (2 · i) ≠ 0)
275, 10, 26, 19divne0d 12059 . . . 4 (𝐴 ∈ dom arctan → ((2 · i) / (𝐴 + i)) ≠ 0)
2824, 27eqnetrd 3008 . . 3 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) + 1) ≠ 0)
29 tanval3 16170 . . 3 (((arctan‘𝐴) ∈ ℂ ∧ ((exp‘(2 · (i · (arctan‘𝐴)))) + 1) ≠ 0) → (tan‘(arctan‘𝐴)) = (((exp‘(2 · (i · (arctan‘𝐴)))) − 1) / (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1))))
301, 28, 29syl2anc 584 . 2 (𝐴 ∈ dom arctan → (tan‘(arctan‘𝐴)) = (((exp‘(2 · (i · (arctan‘𝐴)))) − 1) / (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1))))
312oveq1d 7446 . . . . . 6 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) − 1) = ((((2 · i) / (𝐴 + i)) − 1) − 1))
3221a1i 11 . . . . . . . 8 (𝐴 ∈ dom arctan → 1 ∈ ℂ)
3320, 32, 32subsub4d 11651 . . . . . . 7 (𝐴 ∈ dom arctan → ((((2 · i) / (𝐴 + i)) − 1) − 1) = (((2 · i) / (𝐴 + i)) − (1 + 1)))
34 df-2 12329 . . . . . . . 8 2 = (1 + 1)
3534oveq2i 7442 . . . . . . 7 (((2 · i) / (𝐴 + i)) − 2) = (((2 · i) / (𝐴 + i)) − (1 + 1))
3633, 35eqtr4di 2795 . . . . . 6 (𝐴 ∈ dom arctan → ((((2 · i) / (𝐴 + i)) − 1) − 1) = (((2 · i) / (𝐴 + i)) − 2))
3731, 36eqtrd 2777 . . . . 5 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) − 1) = (((2 · i) / (𝐴 + i)) − 2))
38 2cn 12341 . . . . . . . 8 2 ∈ ℂ
39 mulcl 11239 . . . . . . . 8 ((2 ∈ ℂ ∧ (𝐴 + i) ∈ ℂ) → (2 · (𝐴 + i)) ∈ ℂ)
4038, 10, 39sylancr 587 . . . . . . 7 (𝐴 ∈ dom arctan → (2 · (𝐴 + i)) ∈ ℂ)
415, 40, 10, 19divsubdird 12082 . . . . . 6 (𝐴 ∈ dom arctan → (((2 · i) − (2 · (𝐴 + i))) / (𝐴 + i)) = (((2 · i) / (𝐴 + i)) − ((2 · (𝐴 + i)) / (𝐴 + i))))
42 mulneg12 11701 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-2 · 𝐴) = (2 · -𝐴))
4338, 7, 42sylancr 587 . . . . . . . 8 (𝐴 ∈ dom arctan → (-2 · 𝐴) = (2 · -𝐴))
44 negsub 11557 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i + -𝐴) = (i − 𝐴))
458, 7, 44sylancr 587 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (i + -𝐴) = (i − 𝐴))
4645oveq1d 7446 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((i + -𝐴) − i) = ((i − 𝐴) − i))
477negcld 11607 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → -𝐴 ∈ ℂ)
48 pncan2 11515 . . . . . . . . . . 11 ((i ∈ ℂ ∧ -𝐴 ∈ ℂ) → ((i + -𝐴) − i) = -𝐴)
498, 47, 48sylancr 587 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((i + -𝐴) − i) = -𝐴)
508a1i 11 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → i ∈ ℂ)
5150, 7, 50subsub4d 11651 . . . . . . . . . 10 (𝐴 ∈ dom arctan → ((i − 𝐴) − i) = (i − (𝐴 + i)))
5246, 49, 513eqtr3rd 2786 . . . . . . . . 9 (𝐴 ∈ dom arctan → (i − (𝐴 + i)) = -𝐴)
5352oveq2d 7447 . . . . . . . 8 (𝐴 ∈ dom arctan → (2 · (i − (𝐴 + i))) = (2 · -𝐴))
5438a1i 11 . . . . . . . . 9 (𝐴 ∈ dom arctan → 2 ∈ ℂ)
5554, 50, 10subdid 11719 . . . . . . . 8 (𝐴 ∈ dom arctan → (2 · (i − (𝐴 + i))) = ((2 · i) − (2 · (𝐴 + i))))
5643, 53, 553eqtr2rd 2784 . . . . . . 7 (𝐴 ∈ dom arctan → ((2 · i) − (2 · (𝐴 + i))) = (-2 · 𝐴))
5756oveq1d 7446 . . . . . 6 (𝐴 ∈ dom arctan → (((2 · i) − (2 · (𝐴 + i))) / (𝐴 + i)) = ((-2 · 𝐴) / (𝐴 + i)))
5854, 10, 19divcan4d 12049 . . . . . . 7 (𝐴 ∈ dom arctan → ((2 · (𝐴 + i)) / (𝐴 + i)) = 2)
5958oveq2d 7447 . . . . . 6 (𝐴 ∈ dom arctan → (((2 · i) / (𝐴 + i)) − ((2 · (𝐴 + i)) / (𝐴 + i))) = (((2 · i) / (𝐴 + i)) − 2))
6041, 57, 593eqtr3d 2785 . . . . 5 (𝐴 ∈ dom arctan → ((-2 · 𝐴) / (𝐴 + i)) = (((2 · i) / (𝐴 + i)) − 2))
6137, 60eqtr4d 2780 . . . 4 (𝐴 ∈ dom arctan → ((exp‘(2 · (i · (arctan‘𝐴)))) − 1) = ((-2 · 𝐴) / (𝐴 + i)))
6224oveq2d 7447 . . . . 5 (𝐴 ∈ dom arctan → (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1)) = (i · ((2 · i) / (𝐴 + i))))
638, 38, 8mul12i 11456 . . . . . . . 8 (i · (2 · i)) = (2 · (i · i))
64 ixi 11892 . . . . . . . . 9 (i · i) = -1
6564oveq2i 7442 . . . . . . . 8 (2 · (i · i)) = (2 · -1)
6621negcli 11577 . . . . . . . . 9 -1 ∈ ℂ
6738mulm1i 11708 . . . . . . . . 9 (-1 · 2) = -2
6866, 38, 67mulcomli 11270 . . . . . . . 8 (2 · -1) = -2
6963, 65, 683eqtri 2769 . . . . . . 7 (i · (2 · i)) = -2
7069oveq1i 7441 . . . . . 6 ((i · (2 · i)) / (𝐴 + i)) = (-2 / (𝐴 + i))
7150, 5, 10, 19divassd 12078 . . . . . 6 (𝐴 ∈ dom arctan → ((i · (2 · i)) / (𝐴 + i)) = (i · ((2 · i) / (𝐴 + i))))
7270, 71eqtr3id 2791 . . . . 5 (𝐴 ∈ dom arctan → (-2 / (𝐴 + i)) = (i · ((2 · i) / (𝐴 + i))))
7362, 72eqtr4d 2780 . . . 4 (𝐴 ∈ dom arctan → (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1)) = (-2 / (𝐴 + i)))
7461, 73oveq12d 7449 . . 3 (𝐴 ∈ dom arctan → (((exp‘(2 · (i · (arctan‘𝐴)))) − 1) / (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1))) = (((-2 · 𝐴) / (𝐴 + i)) / (-2 / (𝐴 + i))))
7538negcli 11577 . . . . . 6 -2 ∈ ℂ
76 mulcl 11239 . . . . . 6 ((-2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-2 · 𝐴) ∈ ℂ)
7775, 7, 76sylancr 587 . . . . 5 (𝐴 ∈ dom arctan → (-2 · 𝐴) ∈ ℂ)
7875a1i 11 . . . . 5 (𝐴 ∈ dom arctan → -2 ∈ ℂ)
79 2ne0 12370 . . . . . . 7 2 ≠ 0
8038, 79negne0i 11584 . . . . . 6 -2 ≠ 0
8180a1i 11 . . . . 5 (𝐴 ∈ dom arctan → -2 ≠ 0)
8277, 78, 10, 81, 19divcan7d 12071 . . . 4 (𝐴 ∈ dom arctan → (((-2 · 𝐴) / (𝐴 + i)) / (-2 / (𝐴 + i))) = ((-2 · 𝐴) / -2))
837, 78, 81divcan3d 12048 . . . 4 (𝐴 ∈ dom arctan → ((-2 · 𝐴) / -2) = 𝐴)
8482, 83eqtrd 2777 . . 3 (𝐴 ∈ dom arctan → (((-2 · 𝐴) / (𝐴 + i)) / (-2 / (𝐴 + i))) = 𝐴)
8574, 84eqtrd 2777 . 2 (𝐴 ∈ dom arctan → (((exp‘(2 · (i · (arctan‘𝐴)))) − 1) / (i · ((exp‘(2 · (i · (arctan‘𝐴)))) + 1))) = 𝐴)
8630, 85eqtrd 2777 1 (𝐴 ∈ dom arctan → (tan‘(arctan‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  dom cdm 5685  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156  ici 11157   + caddc 11158   · cmul 11160  cmin 11492  -cneg 11493   / cdiv 11920  2c2 12321  expce 16097  tanctan 16101  arctancatan 26907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-tan 16107  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-atan 26910
This theorem is referenced by:  atantanb  26967  atanord  26970
  Copyright terms: Public domain W3C validator