Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulcli | Structured version Visualization version GIF version |
Description: Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
mulcli | ⊢ (𝐴 · 𝐵) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mulcl 10886 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴 · 𝐵) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 · cmul 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcl 10864 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mul02lem2 11082 addid1 11085 cnegex2 11087 ixi 11534 2mulicn 12126 numma 12410 nummac 12411 9t11e99 12496 decbin2 12507 irec 13846 binom2i 13856 crreczi 13871 3dec 13908 nn0opthi 13912 faclbnd4lem1 13935 rei 14795 imi 14796 iseraltlem2 15322 bpoly3 15696 bpoly4 15697 3dvdsdec 15969 3dvds2dec 15970 odd2np1 15978 gcdaddmlem 16159 3lcm2e6woprm 16248 6lcm4e12 16249 modxai 16697 mod2xnegi 16700 decexp2 16704 karatsuba 16713 sinhalfpilem 25525 ef2pi 25539 ef2kpi 25540 efper 25541 sinperlem 25542 sin2kpi 25545 cos2kpi 25546 sin2pim 25547 cos2pim 25548 sincos4thpi 25575 sincos6thpi 25577 pige3ALT 25581 abssinper 25582 efeq1 25589 logneg 25648 logm1 25649 eflogeq 25662 logimul 25674 logneg2 25675 cxpsqrt 25763 root1eq1 25813 cxpeq 25815 ang180lem1 25864 ang180lem3 25866 ang180lem4 25867 1cubrlem 25896 1cubr 25897 quart1lem 25910 asin1 25949 atanlogsublem 25970 log2ublem2 26002 log2ublem3 26003 log2ub 26004 bclbnd 26333 bposlem8 26344 bposlem9 26345 lgsdir2lem5 26382 2lgsoddprmlem3c 26465 2lgsoddprmlem3d 26466 ax5seglem7 27206 ip0i 29088 ip1ilem 29089 ipasslem10 29102 siilem1 29114 normlem0 29372 normlem1 29373 normlem2 29374 normlem3 29375 normlem5 29377 normlem7 29379 bcseqi 29383 norm-ii-i 29400 normpar2i 29419 polid2i 29420 h1de2i 29816 lnopunilem1 30273 lnophmlem2 30280 dfdec100 31046 dpmul100 31073 dp3mul10 31074 dpmul1000 31075 dpexpp1 31084 dpmul 31089 dpmul4 31090 ballotth 32404 efmul2picn 32476 itgexpif 32486 vtscl 32518 circlemeth 32520 hgt750lem 32531 problem2 33524 problem4 33526 quad3 33528 logi 33606 heiborlem6 35901 gcdaddmzz2nncomi 39932 sn-1ne2 40216 sqsumi 40230 sqmid3api 40232 sqdeccom12 40238 re1m1e0m0 40301 reixi 40325 sn-1ticom 40337 sn-0tie0 40342 sn-inelr 40356 proot1ex 40942 areaquad 40963 resqrtvalex 41142 imsqrtvalex 41143 coskpi2 43297 cosnegpi 43298 cosknegpi 43300 wallispilem4 43499 dirkerper 43527 dirkertrigeq 43532 dirkercncflem2 43535 fourierdlem57 43594 fourierdlem62 43599 fourierswlem 43661 fmtnorec3 44888 fmtnorec4 44889 lighneallem3 44947 3exp4mod41 44956 41prothprmlem1 44957 zlmodzxzequap 45728 nn0sumshdiglemB 45854 i2linesi 46368 |
Copyright terms: Public domain | W3C validator |