Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulcli | Structured version Visualization version GIF version |
Description: Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
mulcli | ⊢ (𝐴 · 𝐵) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mulcl 10964 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐴 · 𝐵) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 (class class class)co 7284 ℂcc 10878 · cmul 10885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcl 10942 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mul02lem2 11161 addid1 11164 cnegex2 11166 ixi 11613 2mulicn 12205 numma 12490 nummac 12491 9t11e99 12576 decbin2 12587 irec 13927 binom2i 13937 crreczi 13952 3dec 13989 nn0opthi 13993 faclbnd4lem1 14016 rei 14876 imi 14877 iseraltlem2 15403 bpoly3 15777 bpoly4 15778 3dvdsdec 16050 3dvds2dec 16051 odd2np1 16059 gcdaddmlem 16240 3lcm2e6woprm 16329 6lcm4e12 16330 modxai 16778 mod2xnegi 16781 decexp2 16785 karatsuba 16794 sinhalfpilem 25629 ef2pi 25643 ef2kpi 25644 efper 25645 sinperlem 25646 sin2kpi 25649 cos2kpi 25650 sin2pim 25651 cos2pim 25652 sincos4thpi 25679 sincos6thpi 25681 pige3ALT 25685 abssinper 25686 efeq1 25693 logneg 25752 logm1 25753 eflogeq 25766 logimul 25778 logneg2 25779 cxpsqrt 25867 root1eq1 25917 cxpeq 25919 ang180lem1 25968 ang180lem3 25970 ang180lem4 25971 1cubrlem 26000 1cubr 26001 quart1lem 26014 asin1 26053 atanlogsublem 26074 log2ublem2 26106 log2ublem3 26107 log2ub 26108 bclbnd 26437 bposlem8 26448 bposlem9 26449 lgsdir2lem5 26486 2lgsoddprmlem3c 26569 2lgsoddprmlem3d 26570 ax5seglem7 27312 ip0i 29196 ip1ilem 29197 ipasslem10 29210 siilem1 29222 normlem0 29480 normlem1 29481 normlem2 29482 normlem3 29483 normlem5 29485 normlem7 29487 bcseqi 29491 norm-ii-i 29508 normpar2i 29527 polid2i 29528 h1de2i 29924 lnopunilem1 30381 lnophmlem2 30388 dfdec100 31153 dpmul100 31180 dp3mul10 31181 dpmul1000 31182 dpexpp1 31191 dpmul 31196 dpmul4 31197 ballotth 32513 efmul2picn 32585 itgexpif 32595 vtscl 32627 circlemeth 32629 hgt750lem 32640 problem2 33633 problem4 33635 quad3 33637 logi 33709 heiborlem6 35983 gcdaddmzz2nncomi 40011 sn-1ne2 40302 sqsumi 40316 sqmid3api 40318 sqdeccom12 40324 re1m1e0m0 40387 reixi 40411 sn-1ticom 40423 sn-0tie0 40428 sn-inelr 40442 proot1ex 41033 areaquad 41054 resqrtvalex 41260 imsqrtvalex 41261 coskpi2 43414 cosnegpi 43415 cosknegpi 43417 wallispilem4 43616 dirkerper 43644 dirkertrigeq 43649 dirkercncflem2 43652 fourierdlem57 43711 fourierdlem62 43716 fourierswlem 43778 fmtnorec3 45011 fmtnorec4 45012 lighneallem3 45070 3exp4mod41 45079 41prothprmlem1 45080 zlmodzxzequap 45851 nn0sumshdiglemB 45977 i2linesi 46493 |
Copyright terms: Public domain | W3C validator |