![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcli | Structured version Visualization version GIF version |
Description: Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
mulcli | ⊢ (𝐴 · 𝐵) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mulcl 10467 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴 · 𝐵) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2081 (class class class)co 7016 ℂcc 10381 · cmul 10388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcl 10445 |
This theorem depends on definitions: df-bi 208 df-an 397 |
This theorem is referenced by: mul02lem2 10664 addid1 10667 cnegex2 10669 ixi 11117 2mulicn 11708 numma 11991 nummac 11992 9t11e99 12078 decbin2 12089 irec 13414 binom2i 13424 crreczi 13439 3dec 13476 nn0opthi 13480 faclbnd4lem1 13503 rei 14349 imi 14350 iseraltlem2 14873 bpoly3 15245 bpoly4 15246 3dvdsdec 15514 3dvds2dec 15515 odd2np1 15523 gcdaddmlem 15705 3lcm2e6woprm 15788 6lcm4e12 15789 modxai 16233 mod2xnegi 16236 decexp2 16240 karatsuba 16249 sinhalfpilem 24732 ef2pi 24746 ef2kpi 24747 efper 24748 sinperlem 24749 sin2kpi 24752 cos2kpi 24753 sin2pim 24754 cos2pim 24755 sincos4thpi 24782 sincos6thpi 24784 pige3ALT 24788 abssinper 24789 efeq1 24794 logneg 24852 logm1 24853 eflogeq 24866 logimul 24878 logneg2 24879 cxpsqrt 24967 root1eq1 25017 cxpeq 25019 ang180lem1 25068 ang180lem3 25070 ang180lem4 25071 1cubrlem 25100 1cubr 25101 quart1lem 25114 asin1 25153 atanlogsublem 25174 log2ublem2 25207 log2ublem3 25208 log2ub 25209 bclbnd 25538 bposlem8 25549 bposlem9 25550 lgsdir2lem5 25587 2lgsoddprmlem3c 25670 2lgsoddprmlem3d 25671 ax5seglem7 26404 ip0i 28293 ip1ilem 28294 ipasslem10 28307 siilem1 28319 normlem0 28577 normlem1 28578 normlem2 28579 normlem3 28580 normlem5 28582 normlem7 28584 bcseqi 28588 norm-ii-i 28605 normpar2i 28624 polid2i 28625 h1de2i 29021 lnopunilem1 29478 lnophmlem2 29485 dfdec100 30230 dpmul100 30257 dp3mul10 30258 dpmul1000 30259 dpexpp1 30268 dpmul 30273 dpmul4 30274 ballotth 31412 efmul2picn 31484 itgexpif 31494 vtscl 31526 circlemeth 31528 hgt750lem 31539 problem2 32518 problem4 32520 quad3 32522 logi 32575 heiborlem6 34645 sqsumi 38708 sqmid3api 38710 sqdeccom12 38716 proot1ex 39305 areaquad 39327 coskpi2 41708 cosnegpi 41709 cosknegpi 41711 wallispilem4 41915 dirkerper 41943 dirkertrigeq 41948 dirkercncflem2 41951 fourierdlem57 42010 fourierdlem62 42015 fourierswlem 42077 fmtnorec3 43212 fmtnorec4 43213 lighneallem3 43274 3exp4mod41 43283 41prothprmlem1 43284 zlmodzxzequap 44054 nn0sumshdiglemB 44181 i2linesi 44379 |
Copyright terms: Public domain | W3C validator |