![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcli | Structured version Visualization version GIF version |
Description: Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
mulcli | ⊢ (𝐴 · 𝐵) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mulcl 11264 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 · 𝐵) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2103 (class class class)co 7445 ℂcc 11178 · cmul 11185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcl 11242 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mul02lem2 11463 addrid 11466 cnegex2 11468 ixi 11915 2mulicn 12512 numma 12798 nummac 12799 9t11e99 12884 decbin2 12895 irec 14246 binom2i 14257 crreczi 14273 3dec 14311 nn0opthi 14315 faclbnd4lem1 14338 rei 15201 imi 15202 iseraltlem2 15727 bpoly3 16100 bpoly4 16101 3dvdsdec 16374 3dvds2dec 16375 odd2np1 16383 gcdaddmlem 16564 3lcm2e6woprm 16656 6lcm4e12 16657 modxai 17110 mod2xnegi 17113 decexp2 17117 karatsuba 17126 sinhalfpilem 26515 ef2pi 26529 ef2kpi 26530 efper 26531 sinperlem 26532 sin2kpi 26535 cos2kpi 26536 sin2pim 26537 cos2pim 26538 sincos4thpi 26565 sincos6thpi 26567 pige3ALT 26571 abssinper 26572 efeq1 26579 logi 26638 logneg 26639 logm1 26640 eflogeq 26653 logimul 26665 logneg2 26666 cxpsqrt 26754 root1eq1 26807 cxpeq 26809 ang180lem1 26861 ang180lem3 26863 ang180lem4 26864 1cubrlem 26893 1cubr 26894 quart1lem 26907 asin1 26946 atanlogsublem 26967 log2ublem2 26999 log2ublem3 27000 log2ub 27001 bclbnd 27333 bposlem8 27344 bposlem9 27345 lgsdir2lem5 27382 2lgsoddprmlem3c 27465 2lgsoddprmlem3d 27466 ax5seglem7 28959 ip0i 30848 ip1ilem 30849 ipasslem10 30862 siilem1 30874 normlem0 31132 normlem1 31133 normlem2 31134 normlem3 31135 normlem5 31137 normlem7 31139 bcseqi 31143 norm-ii-i 31160 normpar2i 31179 polid2i 31180 h1de2i 31576 lnopunilem1 32033 lnophmlem2 32040 dfdec100 32826 dpmul100 32853 dp3mul10 32854 dpmul1000 32855 dpexpp1 32864 dpmul 32869 dpmul4 32870 ballotth 34494 efmul2picn 34565 itgexpif 34575 vtscl 34607 circlemeth 34609 hgt750lem 34620 problem2 35626 problem4 35628 quad3 35630 heiborlem6 37724 gcdaddmzz2nncomi 41900 sn-1ne2 42202 sqsumi 42218 sqmid3api 42220 sqdeccom12 42226 cxp112d 42266 cxp111d 42267 cxpi11d 42268 re1m1e0m0 42306 reixi 42331 sn-1ticom 42343 sn-0tie0 42348 sn-inelr 42376 proot1ex 43097 areaquad 43117 resqrtvalex 43547 imsqrtvalex 43548 coskpi2 45721 cosnegpi 45722 cosknegpi 45724 wallispilem4 45923 dirkerper 45951 dirkertrigeq 45956 dirkercncflem2 45959 fourierdlem57 46018 fourierdlem62 46023 fourierswlem 46085 fmtnorec3 47354 fmtnorec4 47355 lighneallem3 47413 3exp4mod41 47422 41prothprmlem1 47423 zlmodzxzequap 48146 nn0sumshdiglemB 48272 i2linesi 48790 |
Copyright terms: Public domain | W3C validator |