![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcli | Structured version Visualization version GIF version |
Description: Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
mulcli | ⊢ (𝐴 · 𝐵) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mulcl 11237 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 · 𝐵) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 · cmul 11158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcl 11215 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mul02lem2 11436 addrid 11439 cnegex2 11441 ixi 11890 2mulicn 12487 numma 12775 nummac 12776 9t11e99 12861 decbin2 12872 irec 14237 binom2i 14248 crreczi 14264 3dec 14302 nn0opthi 14306 faclbnd4lem1 14329 rei 15192 imi 15193 iseraltlem2 15716 bpoly3 16091 bpoly4 16092 3dvdsdec 16366 3dvds2dec 16367 odd2np1 16375 gcdaddmlem 16558 3lcm2e6woprm 16649 6lcm4e12 16650 modxai 17102 mod2xnegi 17105 decexp2 17109 karatsuba 17118 sinhalfpilem 26520 ef2pi 26534 ef2kpi 26535 efper 26536 sinperlem 26537 sin2kpi 26540 cos2kpi 26541 sin2pim 26542 cos2pim 26543 sincos4thpi 26570 sincos6thpi 26573 pige3ALT 26577 abssinper 26578 efeq1 26585 logi 26644 logneg 26645 logm1 26646 eflogeq 26659 logimul 26671 logneg2 26672 cxpsqrt 26760 root1eq1 26813 cxpeq 26815 ang180lem1 26867 ang180lem3 26869 ang180lem4 26870 1cubrlem 26899 1cubr 26900 quart1lem 26913 asin1 26952 atanlogsublem 26973 log2ublem2 27005 log2ublem3 27006 log2ub 27007 bclbnd 27339 bposlem8 27350 bposlem9 27351 lgsdir2lem5 27388 2lgsoddprmlem3c 27471 2lgsoddprmlem3d 27472 ax5seglem7 28965 ip0i 30854 ip1ilem 30855 ipasslem10 30868 siilem1 30880 normlem0 31138 normlem1 31139 normlem2 31140 normlem3 31141 normlem5 31143 normlem7 31145 bcseqi 31149 norm-ii-i 31166 normpar2i 31185 polid2i 31186 h1de2i 31582 lnopunilem1 32039 lnophmlem2 32046 dfdec100 32837 dpmul100 32864 dp3mul10 32865 dpmul1000 32866 dpexpp1 32875 dpmul 32880 dpmul4 32881 ballotth 34519 efmul2picn 34590 itgexpif 34600 vtscl 34632 circlemeth 34634 hgt750lem 34645 problem2 35651 problem4 35653 quad3 35655 heiborlem6 37803 gcdaddmzz2nncomi 41977 sn-1ne2 42279 sqsumi 42295 sqmid3api 42297 sqdeccom12 42303 cxp112d 42356 cxp111d 42357 cxpi11d 42358 re1m1e0m0 42404 reixi 42429 sn-1ticom 42441 sn-0tie0 42446 sn-inelr 42474 proot1ex 43185 areaquad 43205 resqrtvalex 43635 imsqrtvalex 43636 coskpi2 45822 cosnegpi 45823 cosknegpi 45825 wallispilem4 46024 dirkerper 46052 dirkertrigeq 46057 dirkercncflem2 46060 fourierdlem57 46119 fourierdlem62 46124 fourierswlem 46186 fmtnorec3 47473 fmtnorec4 47474 lighneallem3 47532 3exp4mod41 47541 41prothprmlem1 47542 zlmodzxzequap 48345 nn0sumshdiglemB 48470 i2linesi 49009 |
Copyright terms: Public domain | W3C validator |