![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcli | Structured version Visualization version GIF version |
Description: Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
mulcli | ⊢ (𝐴 · 𝐵) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mulcl 11268 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 · 𝐵) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 · cmul 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcl 11246 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mul02lem2 11467 addrid 11470 cnegex2 11472 ixi 11919 2mulicn 12516 numma 12802 nummac 12803 9t11e99 12888 decbin2 12899 irec 14250 binom2i 14261 crreczi 14277 3dec 14315 nn0opthi 14319 faclbnd4lem1 14342 rei 15205 imi 15206 iseraltlem2 15731 bpoly3 16106 bpoly4 16107 3dvdsdec 16380 3dvds2dec 16381 odd2np1 16389 gcdaddmlem 16570 3lcm2e6woprm 16662 6lcm4e12 16663 modxai 17115 mod2xnegi 17118 decexp2 17122 karatsuba 17131 sinhalfpilem 26523 ef2pi 26537 ef2kpi 26538 efper 26539 sinperlem 26540 sin2kpi 26543 cos2kpi 26544 sin2pim 26545 cos2pim 26546 sincos4thpi 26573 sincos6thpi 26576 pige3ALT 26580 abssinper 26581 efeq1 26588 logi 26647 logneg 26648 logm1 26649 eflogeq 26662 logimul 26674 logneg2 26675 cxpsqrt 26763 root1eq1 26816 cxpeq 26818 ang180lem1 26870 ang180lem3 26872 ang180lem4 26873 1cubrlem 26902 1cubr 26903 quart1lem 26916 asin1 26955 atanlogsublem 26976 log2ublem2 27008 log2ublem3 27009 log2ub 27010 bclbnd 27342 bposlem8 27353 bposlem9 27354 lgsdir2lem5 27391 2lgsoddprmlem3c 27474 2lgsoddprmlem3d 27475 ax5seglem7 28968 ip0i 30857 ip1ilem 30858 ipasslem10 30871 siilem1 30883 normlem0 31141 normlem1 31142 normlem2 31143 normlem3 31144 normlem5 31146 normlem7 31148 bcseqi 31152 norm-ii-i 31169 normpar2i 31188 polid2i 31189 h1de2i 31585 lnopunilem1 32042 lnophmlem2 32049 dfdec100 32834 dpmul100 32861 dp3mul10 32862 dpmul1000 32863 dpexpp1 32872 dpmul 32877 dpmul4 32878 ballotth 34502 efmul2picn 34573 itgexpif 34583 vtscl 34615 circlemeth 34617 hgt750lem 34628 problem2 35634 problem4 35636 quad3 35638 heiborlem6 37776 gcdaddmzz2nncomi 41952 sn-1ne2 42254 sqsumi 42270 sqmid3api 42272 sqdeccom12 42278 cxp112d 42329 cxp111d 42330 cxpi11d 42331 re1m1e0m0 42373 reixi 42398 sn-1ticom 42410 sn-0tie0 42415 sn-inelr 42443 proot1ex 43157 areaquad 43177 resqrtvalex 43607 imsqrtvalex 43608 coskpi2 45787 cosnegpi 45788 cosknegpi 45790 wallispilem4 45989 dirkerper 46017 dirkertrigeq 46022 dirkercncflem2 46025 fourierdlem57 46084 fourierdlem62 46089 fourierswlem 46151 fmtnorec3 47422 fmtnorec4 47423 lighneallem3 47481 3exp4mod41 47490 41prothprmlem1 47491 zlmodzxzequap 48228 nn0sumshdiglemB 48354 i2linesi 48872 |
Copyright terms: Public domain | W3C validator |