MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wlkdlem6 Structured version   Visualization version   GIF version

Theorem 2wlkdlem6 29185
Description: Lemma 6 for 2wlkd 29190. (Contributed by AV, 23-Jan-2021.)
Hypotheses
Ref Expression
2wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2wlkd.f 𝐹 = ⟨“𝐽𝐾”⟩
2wlkd.s (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
2wlkd.n (𝜑 → (𝐴𝐵𝐵𝐶))
2wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
Assertion
Ref Expression
2wlkdlem6 (𝜑 → (𝐵 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾)))

Proof of Theorem 2wlkdlem6
StepHypRef Expression
1 2wlkd.e . 2 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
2 prcom 4737 . . . . . . . . 9 {𝐴, 𝐵} = {𝐵, 𝐴}
32sseq1i 4011 . . . . . . . 8 ({𝐴, 𝐵} ⊆ (𝐼𝐽) ↔ {𝐵, 𝐴} ⊆ (𝐼𝐽))
43biimpi 215 . . . . . . 7 ({𝐴, 𝐵} ⊆ (𝐼𝐽) → {𝐵, 𝐴} ⊆ (𝐼𝐽))
54adantl 483 . . . . . 6 ((𝜑 ∧ {𝐴, 𝐵} ⊆ (𝐼𝐽)) → {𝐵, 𝐴} ⊆ (𝐼𝐽))
6 2wlkd.s . . . . . . . 8 (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
76simp2d 1144 . . . . . . 7 (𝜑𝐵𝑉)
86simp1d 1143 . . . . . . . 8 (𝜑𝐴𝑉)
98adantr 482 . . . . . . 7 ((𝜑 ∧ {𝐴, 𝐵} ⊆ (𝐼𝐽)) → 𝐴𝑉)
10 prssg 4823 . . . . . . 7 ((𝐵𝑉𝐴𝑉) → ((𝐵 ∈ (𝐼𝐽) ∧ 𝐴 ∈ (𝐼𝐽)) ↔ {𝐵, 𝐴} ⊆ (𝐼𝐽)))
117, 9, 10syl2an2r 684 . . . . . 6 ((𝜑 ∧ {𝐴, 𝐵} ⊆ (𝐼𝐽)) → ((𝐵 ∈ (𝐼𝐽) ∧ 𝐴 ∈ (𝐼𝐽)) ↔ {𝐵, 𝐴} ⊆ (𝐼𝐽)))
125, 11mpbird 257 . . . . 5 ((𝜑 ∧ {𝐴, 𝐵} ⊆ (𝐼𝐽)) → (𝐵 ∈ (𝐼𝐽) ∧ 𝐴 ∈ (𝐼𝐽)))
1312simpld 496 . . . 4 ((𝜑 ∧ {𝐴, 𝐵} ⊆ (𝐼𝐽)) → 𝐵 ∈ (𝐼𝐽))
1413ex 414 . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) → 𝐵 ∈ (𝐼𝐽)))
15 simpr 486 . . . . . 6 ((𝜑 ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)) → {𝐵, 𝐶} ⊆ (𝐼𝐾))
166simp3d 1145 . . . . . . . 8 (𝜑𝐶𝑉)
1716adantr 482 . . . . . . 7 ((𝜑 ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)) → 𝐶𝑉)
18 prssg 4823 . . . . . . 7 ((𝐵𝑉𝐶𝑉) → ((𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐾)) ↔ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
197, 17, 18syl2an2r 684 . . . . . 6 ((𝜑 ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)) → ((𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐾)) ↔ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
2015, 19mpbird 257 . . . . 5 ((𝜑 ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)) → (𝐵 ∈ (𝐼𝐾) ∧ 𝐶 ∈ (𝐼𝐾)))
2120simpld 496 . . . 4 ((𝜑 ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)) → 𝐵 ∈ (𝐼𝐾))
2221ex 414 . . 3 (𝜑 → ({𝐵, 𝐶} ⊆ (𝐼𝐾) → 𝐵 ∈ (𝐼𝐾)))
2314, 22anim12d 610 . 2 (𝜑 → (({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)) → (𝐵 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾))))
241, 23mpd 15 1 (𝜑 → (𝐵 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wss 3949  {cpr 4631  cfv 6544  ⟨“cs2 14792  ⟨“cs3 14793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-un 3954  df-in 3956  df-ss 3966  df-sn 4630  df-pr 4632
This theorem is referenced by:  2wlkdlem7  29186
  Copyright terms: Public domain W3C validator