Proof of Theorem 2wlkdlem6
Step | Hyp | Ref
| Expression |
1 | | 2wlkd.e |
. 2
⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
2 | | prcom 4668 |
. . . . . . . . 9
⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
3 | 2 | sseq1i 3949 |
. . . . . . . 8
⊢ ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ↔ {𝐵, 𝐴} ⊆ (𝐼‘𝐽)) |
4 | 3 | biimpi 215 |
. . . . . . 7
⊢ ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) → {𝐵, 𝐴} ⊆ (𝐼‘𝐽)) |
5 | 4 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ {𝐴, 𝐵} ⊆ (𝐼‘𝐽)) → {𝐵, 𝐴} ⊆ (𝐼‘𝐽)) |
6 | | 2wlkd.s |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
7 | 6 | simp2d 1142 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
8 | 6 | simp1d 1141 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
9 | 8 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ {𝐴, 𝐵} ⊆ (𝐼‘𝐽)) → 𝐴 ∈ 𝑉) |
10 | | prssg 4752 |
. . . . . . 7
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ((𝐵 ∈ (𝐼‘𝐽) ∧ 𝐴 ∈ (𝐼‘𝐽)) ↔ {𝐵, 𝐴} ⊆ (𝐼‘𝐽))) |
11 | 7, 9, 10 | syl2an2r 682 |
. . . . . 6
⊢ ((𝜑 ∧ {𝐴, 𝐵} ⊆ (𝐼‘𝐽)) → ((𝐵 ∈ (𝐼‘𝐽) ∧ 𝐴 ∈ (𝐼‘𝐽)) ↔ {𝐵, 𝐴} ⊆ (𝐼‘𝐽))) |
12 | 5, 11 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ {𝐴, 𝐵} ⊆ (𝐼‘𝐽)) → (𝐵 ∈ (𝐼‘𝐽) ∧ 𝐴 ∈ (𝐼‘𝐽))) |
13 | 12 | simpld 495 |
. . . 4
⊢ ((𝜑 ∧ {𝐴, 𝐵} ⊆ (𝐼‘𝐽)) → 𝐵 ∈ (𝐼‘𝐽)) |
14 | 13 | ex 413 |
. . 3
⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) → 𝐵 ∈ (𝐼‘𝐽))) |
15 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾)) → {𝐵, 𝐶} ⊆ (𝐼‘𝐾)) |
16 | 6 | simp3d 1143 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
17 | 16 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾)) → 𝐶 ∈ 𝑉) |
18 | | prssg 4752 |
. . . . . . 7
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ((𝐵 ∈ (𝐼‘𝐾) ∧ 𝐶 ∈ (𝐼‘𝐾)) ↔ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
19 | 7, 17, 18 | syl2an2r 682 |
. . . . . 6
⊢ ((𝜑 ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾)) → ((𝐵 ∈ (𝐼‘𝐾) ∧ 𝐶 ∈ (𝐼‘𝐾)) ↔ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
20 | 15, 19 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾)) → (𝐵 ∈ (𝐼‘𝐾) ∧ 𝐶 ∈ (𝐼‘𝐾))) |
21 | 20 | simpld 495 |
. . . 4
⊢ ((𝜑 ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾)) → 𝐵 ∈ (𝐼‘𝐾)) |
22 | 21 | ex 413 |
. . 3
⊢ (𝜑 → ({𝐵, 𝐶} ⊆ (𝐼‘𝐾) → 𝐵 ∈ (𝐼‘𝐾))) |
23 | 14, 22 | anim12d 609 |
. 2
⊢ (𝜑 → (({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾)) → (𝐵 ∈ (𝐼‘𝐽) ∧ 𝐵 ∈ (𝐼‘𝐾)))) |
24 | 1, 23 | mpd 15 |
1
⊢ (𝜑 → (𝐵 ∈ (𝐼‘𝐽) ∧ 𝐵 ∈ (𝐼‘𝐾))) |