MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wlkdlem7 Structured version   Visualization version   GIF version

Theorem 2wlkdlem7 29621
Description: Lemma 7 for 2wlkd 29625. (Contributed by AV, 14-Feb-2021.)
Hypotheses
Ref Expression
2wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2wlkd.f 𝐹 = ⟨“𝐽𝐾”⟩
2wlkd.s (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
2wlkd.n (𝜑 → (𝐴𝐵𝐵𝐶))
2wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
Assertion
Ref Expression
2wlkdlem7 (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V))

Proof of Theorem 2wlkdlem7
StepHypRef Expression
1 2wlkd.p . . 3 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2 2wlkd.f . . 3 𝐹 = ⟨“𝐽𝐾”⟩
3 2wlkd.s . . 3 (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
4 2wlkd.n . . 3 (𝜑 → (𝐴𝐵𝐵𝐶))
5 2wlkd.e . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
61, 2, 3, 4, 52wlkdlem6 29620 . 2 (𝜑 → (𝐵 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾)))
7 elfvex 6919 . . 3 (𝐵 ∈ (𝐼𝐽) → 𝐽 ∈ V)
8 elfvex 6919 . . 3 (𝐵 ∈ (𝐼𝐾) → 𝐾 ∈ V)
97, 8anim12i 612 . 2 ((𝐵 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾)) → (𝐽 ∈ V ∧ 𝐾 ∈ V))
106, 9syl 17 1 (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  Vcvv 3466  wss 3940  {cpr 4622  cfv 6533  ⟨“cs2 14788  ⟨“cs3 14789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-dm 5676  df-iota 6485  df-fv 6541
This theorem is referenced by:  2wlkdlem8  29622  2trld  29627
  Copyright terms: Public domain W3C validator