MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wlkdlem7 Structured version   Visualization version   GIF version

Theorem 2wlkdlem7 29962
Description: Lemma 7 for 2wlkd 29966. (Contributed by AV, 14-Feb-2021.)
Hypotheses
Ref Expression
2wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2wlkd.f 𝐹 = ⟨“𝐽𝐾”⟩
2wlkd.s (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
2wlkd.n (𝜑 → (𝐴𝐵𝐵𝐶))
2wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
Assertion
Ref Expression
2wlkdlem7 (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V))

Proof of Theorem 2wlkdlem7
StepHypRef Expression
1 2wlkd.p . . 3 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2 2wlkd.f . . 3 𝐹 = ⟨“𝐽𝐾”⟩
3 2wlkd.s . . 3 (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
4 2wlkd.n . . 3 (𝜑 → (𝐴𝐵𝐵𝐶))
5 2wlkd.e . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
61, 2, 3, 4, 52wlkdlem6 29961 . 2 (𝜑 → (𝐵 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾)))
7 elfvex 6945 . . 3 (𝐵 ∈ (𝐼𝐽) → 𝐽 ∈ V)
8 elfvex 6945 . . 3 (𝐵 ∈ (𝐼𝐾) → 𝐾 ∈ V)
97, 8anim12i 613 . 2 ((𝐵 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾)) → (𝐽 ∈ V ∧ 𝐾 ∈ V))
106, 9syl 17 1 (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  wss 3963  {cpr 4633  cfv 6563  ⟨“cs2 14877  ⟨“cs3 14878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-dm 5699  df-iota 6516  df-fv 6571
This theorem is referenced by:  2wlkdlem8  29963  2trld  29968
  Copyright terms: Public domain W3C validator