MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wlkdlem7 Structured version   Visualization version   GIF version

Theorem 2wlkdlem7 28198
Description: Lemma 7 for 2wlkd 28202. (Contributed by AV, 14-Feb-2021.)
Hypotheses
Ref Expression
2wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2wlkd.f 𝐹 = ⟨“𝐽𝐾”⟩
2wlkd.s (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
2wlkd.n (𝜑 → (𝐴𝐵𝐵𝐶))
2wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
Assertion
Ref Expression
2wlkdlem7 (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V))

Proof of Theorem 2wlkdlem7
StepHypRef Expression
1 2wlkd.p . . 3 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2 2wlkd.f . . 3 𝐹 = ⟨“𝐽𝐾”⟩
3 2wlkd.s . . 3 (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
4 2wlkd.n . . 3 (𝜑 → (𝐴𝐵𝐵𝐶))
5 2wlkd.e . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
61, 2, 3, 4, 52wlkdlem6 28197 . 2 (𝜑 → (𝐵 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾)))
7 elfvex 6789 . . 3 (𝐵 ∈ (𝐼𝐽) → 𝐽 ∈ V)
8 elfvex 6789 . . 3 (𝐵 ∈ (𝐼𝐾) → 𝐾 ∈ V)
97, 8anim12i 612 . 2 ((𝐵 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾)) → (𝐽 ∈ V ∧ 𝐾 ∈ V))
106, 9syl 17 1 (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  wss 3883  {cpr 4560  cfv 6418  ⟨“cs2 14482  ⟨“cs3 14483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-dm 5590  df-iota 6376  df-fv 6426
This theorem is referenced by:  2wlkdlem8  28199  2trld  28204
  Copyright terms: Public domain W3C validator