| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2wlkdlem7 | Structured version Visualization version GIF version | ||
| Description: Lemma 7 for 2wlkd 29916. (Contributed by AV, 14-Feb-2021.) |
| Ref | Expression |
|---|---|
| 2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
| 2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
| 2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| 2wlkd.n | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
| 2wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
| Ref | Expression |
|---|---|
| 2wlkdlem7 | ⊢ (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
| 2 | 2wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
| 3 | 2wlkd.s | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
| 4 | 2wlkd.n | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
| 5 | 2wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) | |
| 6 | 1, 2, 3, 4, 5 | 2wlkdlem6 29911 | . 2 ⊢ (𝜑 → (𝐵 ∈ (𝐼‘𝐽) ∧ 𝐵 ∈ (𝐼‘𝐾))) |
| 7 | elfvex 6863 | . . 3 ⊢ (𝐵 ∈ (𝐼‘𝐽) → 𝐽 ∈ V) | |
| 8 | elfvex 6863 | . . 3 ⊢ (𝐵 ∈ (𝐼‘𝐾) → 𝐾 ∈ V) | |
| 9 | 7, 8 | anim12i 613 | . 2 ⊢ ((𝐵 ∈ (𝐼‘𝐽) ∧ 𝐵 ∈ (𝐼‘𝐾)) → (𝐽 ∈ V ∧ 𝐾 ∈ V)) |
| 10 | 6, 9 | syl 17 | 1 ⊢ (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ⊆ wss 3898 {cpr 4577 ‘cfv 6486 〈“cs2 14750 〈“cs3 14751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-dm 5629 df-iota 6442 df-fv 6494 |
| This theorem is referenced by: 2wlkdlem8 29913 2trld 29918 |
| Copyright terms: Public domain | W3C validator |