| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2wlkdlem7 | Structured version Visualization version GIF version | ||
| Description: Lemma 7 for 2wlkd 29873. (Contributed by AV, 14-Feb-2021.) |
| Ref | Expression |
|---|---|
| 2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
| 2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
| 2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| 2wlkd.n | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
| 2wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
| Ref | Expression |
|---|---|
| 2wlkdlem7 | ⊢ (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
| 2 | 2wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
| 3 | 2wlkd.s | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
| 4 | 2wlkd.n | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
| 5 | 2wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) | |
| 6 | 1, 2, 3, 4, 5 | 2wlkdlem6 29868 | . 2 ⊢ (𝜑 → (𝐵 ∈ (𝐼‘𝐽) ∧ 𝐵 ∈ (𝐼‘𝐾))) |
| 7 | elfvex 6899 | . . 3 ⊢ (𝐵 ∈ (𝐼‘𝐽) → 𝐽 ∈ V) | |
| 8 | elfvex 6899 | . . 3 ⊢ (𝐵 ∈ (𝐼‘𝐾) → 𝐾 ∈ V) | |
| 9 | 7, 8 | anim12i 613 | . 2 ⊢ ((𝐵 ∈ (𝐼‘𝐽) ∧ 𝐵 ∈ (𝐼‘𝐾)) → (𝐽 ∈ V ∧ 𝐾 ∈ V)) |
| 10 | 6, 9 | syl 17 | 1 ⊢ (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ⊆ wss 3917 {cpr 4594 ‘cfv 6514 〈“cs2 14814 〈“cs3 14815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-dm 5651 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: 2wlkdlem8 29870 2trld 29875 |
| Copyright terms: Public domain | W3C validator |