![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2wlkdlem7 | Structured version Visualization version GIF version |
Description: Lemma 7 for 2wlkd 29969. (Contributed by AV, 14-Feb-2021.) |
Ref | Expression |
---|---|
2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
2wlkd.n | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
2wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
Ref | Expression |
---|---|
2wlkdlem7 | ⊢ (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
2 | 2wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
3 | 2wlkd.s | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
4 | 2wlkd.n | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
5 | 2wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) | |
6 | 1, 2, 3, 4, 5 | 2wlkdlem6 29964 | . 2 ⊢ (𝜑 → (𝐵 ∈ (𝐼‘𝐽) ∧ 𝐵 ∈ (𝐼‘𝐾))) |
7 | elfvex 6958 | . . 3 ⊢ (𝐵 ∈ (𝐼‘𝐽) → 𝐽 ∈ V) | |
8 | elfvex 6958 | . . 3 ⊢ (𝐵 ∈ (𝐼‘𝐾) → 𝐾 ∈ V) | |
9 | 7, 8 | anim12i 612 | . 2 ⊢ ((𝐵 ∈ (𝐼‘𝐽) ∧ 𝐵 ∈ (𝐼‘𝐾)) → (𝐽 ∈ V ∧ 𝐾 ∈ V)) |
10 | 6, 9 | syl 17 | 1 ⊢ (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ⊆ wss 3976 {cpr 4650 ‘cfv 6573 〈“cs2 14890 〈“cs3 14891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6525 df-fv 6581 |
This theorem is referenced by: 2wlkdlem8 29966 2trld 29971 |
Copyright terms: Public domain | W3C validator |