MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wlkdlem7 Structured version   Visualization version   GIF version

Theorem 2wlkdlem7 27312
Description: Lemma 7 for 2wlkd 27316. (Contributed by AV, 14-Feb-2021.)
Hypotheses
Ref Expression
2wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2wlkd.f 𝐹 = ⟨“𝐽𝐾”⟩
2wlkd.s (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
2wlkd.n (𝜑 → (𝐴𝐵𝐵𝐶))
2wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
Assertion
Ref Expression
2wlkdlem7 (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V))

Proof of Theorem 2wlkdlem7
StepHypRef Expression
1 2wlkd.p . . 3 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2 2wlkd.f . . 3 𝐹 = ⟨“𝐽𝐾”⟩
3 2wlkd.s . . 3 (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
4 2wlkd.n . . 3 (𝜑 → (𝐴𝐵𝐵𝐶))
5 2wlkd.e . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
61, 2, 3, 4, 52wlkdlem6 27311 . 2 (𝜑 → (𝐵 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾)))
7 elfvex 6480 . . 3 (𝐵 ∈ (𝐼𝐽) → 𝐽 ∈ V)
8 elfvex 6480 . . 3 (𝐵 ∈ (𝐼𝐾) → 𝐾 ∈ V)
97, 8anim12i 606 . 2 ((𝐵 ∈ (𝐼𝐽) ∧ 𝐵 ∈ (𝐼𝐾)) → (𝐽 ∈ V ∧ 𝐾 ∈ V))
106, 9syl 17 1 (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2106  wne 2968  Vcvv 3397  wss 3791  {cpr 4399  cfv 6135  ⟨“cs2 13992  ⟨“cs3 13993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-nul 5025  ax-pow 5077
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-dm 5365  df-iota 6099  df-fv 6143
This theorem is referenced by:  2wlkdlem8  27313  2trld  27318
  Copyright terms: Public domain W3C validator