| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2wlkd | Structured version Visualization version GIF version | ||
| Description: Construction of a walk from two given edges in a graph. (Contributed by Alexander van der Vekens, 5-Feb-2018.) (Revised by AV, 23-Jan-2021.) (Proof shortened by AV, 14-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
| Ref | Expression |
|---|---|
| 2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
| 2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
| 2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
| 2wlkd.n | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
| 2wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
| 2wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| 2wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| 2wlkd | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | . . . 4 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
| 2 | s3cli 14854 | . . . 4 ⊢ 〈“𝐴𝐵𝐶”〉 ∈ Word V | |
| 3 | 1, 2 | eqeltri 2825 | . . 3 ⊢ 𝑃 ∈ Word V |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝑃 ∈ Word V) |
| 5 | 2wlkd.f | . . . 4 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
| 6 | s2cli 14853 | . . . 4 ⊢ 〈“𝐽𝐾”〉 ∈ Word V | |
| 7 | 5, 6 | eqeltri 2825 | . . 3 ⊢ 𝐹 ∈ Word V |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 ∈ Word V) |
| 9 | 1, 5 | 2wlkdlem1 29862 | . . 3 ⊢ (♯‘𝑃) = ((♯‘𝐹) + 1) |
| 10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) |
| 11 | 2wlkd.s | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
| 12 | 2wlkd.n | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
| 13 | 2wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) | |
| 14 | 1, 5, 11, 12, 13 | 2wlkdlem10 29872 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) |
| 15 | 1, 5, 11, 12 | 2wlkdlem5 29866 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
| 16 | 2wlkd.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 17 | 16 | 1vgrex 28936 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ V) |
| 18 | 17 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐺 ∈ V) |
| 19 | 11, 18 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ V) |
| 20 | 2wlkd.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 21 | 1, 5, 11 | 2wlkdlem4 29865 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) |
| 22 | 4, 8, 10, 14, 15, 19, 16, 20, 21 | wlkd 29621 | 1 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ⊆ wss 3917 {cpr 4594 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 1c1 11076 + caddc 11078 ♯chash 14302 Word cword 14485 〈“cs2 14814 〈“cs3 14815 Vtxcvtx 28930 iEdgciedg 28931 Walkscwlks 29531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-concat 14543 df-s1 14568 df-s2 14821 df-s3 14822 df-wlks 29534 |
| This theorem is referenced by: 2wlkond 29874 2trld 29875 umgr2adedgwlk 29882 |
| Copyright terms: Public domain | W3C validator |