![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2wlkd | Structured version Visualization version GIF version |
Description: Construction of a walk from two given edges in a graph. (Contributed by Alexander van der Vekens, 5-Feb-2018.) (Revised by AV, 23-Jan-2021.) (Proof shortened by AV, 14-Feb-2021.) (Revised by AV, 24-Mar-2021.) |
Ref | Expression |
---|---|
2wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
2wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
2wlkd.s | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
2wlkd.n | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
2wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
2wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
2wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
2wlkd | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2wlkd.p | . . . 4 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
2 | s3cli 13970 | . . . 4 ⊢ 〈“𝐴𝐵𝐶”〉 ∈ Word V | |
3 | 1, 2 | eqeltri 2878 | . . 3 ⊢ 𝑃 ∈ Word V |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝑃 ∈ Word V) |
5 | 2wlkd.f | . . . 4 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
6 | s2cli 13969 | . . . 4 ⊢ 〈“𝐽𝐾”〉 ∈ Word V | |
7 | 5, 6 | eqeltri 2878 | . . 3 ⊢ 𝐹 ∈ Word V |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 ∈ Word V) |
9 | 1, 5 | 2wlkdlem1 27218 | . . 3 ⊢ (♯‘𝑃) = ((♯‘𝐹) + 1) |
10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) |
11 | 2wlkd.s | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) | |
12 | 2wlkd.n | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) | |
13 | 2wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) | |
14 | 1, 5, 11, 12, 13 | 2wlkdlem10 27228 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) |
15 | 1, 5, 11, 12 | 2wlkdlem5 27222 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
16 | 2wlkd.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
17 | 16 | 1vgrex 26241 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ V) |
18 | 17 | 3ad2ant1 1164 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 𝐺 ∈ V) |
19 | 11, 18 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ V) |
20 | 2wlkd.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
21 | 1, 5, 11 | 2wlkdlem4 27221 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) |
22 | 4, 8, 10, 14, 15, 19, 16, 20, 21 | wlkd 26943 | 1 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2975 Vcvv 3389 ⊆ wss 3773 {cpr 4374 class class class wbr 4847 ‘cfv 6105 (class class class)co 6882 1c1 10229 + caddc 10231 ♯chash 13374 Word cword 13538 〈“cs2 13930 〈“cs3 13931 Vtxcvtx 26235 iEdgciedg 26236 Walkscwlks 26850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2379 ax-ext 2781 ax-rep 4968 ax-sep 4979 ax-nul 4987 ax-pow 5039 ax-pr 5101 ax-un 7187 ax-cnex 10284 ax-resscn 10285 ax-1cn 10286 ax-icn 10287 ax-addcl 10288 ax-addrcl 10289 ax-mulcl 10290 ax-mulrcl 10291 ax-mulcom 10292 ax-addass 10293 ax-mulass 10294 ax-distr 10295 ax-i2m1 10296 ax-1ne0 10297 ax-1rid 10298 ax-rnegex 10299 ax-rrecex 10300 ax-cnre 10301 ax-pre-lttri 10302 ax-pre-lttrn 10303 ax-pre-ltadd 10304 ax-pre-mulgt0 10305 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-ifp 1087 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2593 df-eu 2611 df-clab 2790 df-cleq 2796 df-clel 2799 df-nfc 2934 df-ne 2976 df-nel 3079 df-ral 3098 df-rex 3099 df-reu 3100 df-rab 3102 df-v 3391 df-sbc 3638 df-csb 3733 df-dif 3776 df-un 3778 df-in 3780 df-ss 3787 df-pss 3789 df-nul 4120 df-if 4282 df-pw 4355 df-sn 4373 df-pr 4375 df-tp 4377 df-op 4379 df-uni 4633 df-int 4672 df-iun 4716 df-br 4848 df-opab 4910 df-mpt 4927 df-tr 4950 df-id 5224 df-eprel 5229 df-po 5237 df-so 5238 df-fr 5275 df-we 5277 df-xp 5322 df-rel 5323 df-cnv 5324 df-co 5325 df-dm 5326 df-rn 5327 df-res 5328 df-ima 5329 df-pred 5902 df-ord 5948 df-on 5949 df-lim 5950 df-suc 5951 df-iota 6068 df-fun 6107 df-fn 6108 df-f 6109 df-f1 6110 df-fo 6111 df-f1o 6112 df-fv 6113 df-riota 6843 df-ov 6885 df-oprab 6886 df-mpt2 6887 df-om 7304 df-1st 7405 df-2nd 7406 df-wrecs 7649 df-recs 7711 df-rdg 7749 df-1o 7803 df-oadd 7807 df-er 7986 df-map 8101 df-pm 8102 df-en 8200 df-dom 8201 df-sdom 8202 df-fin 8203 df-card 9055 df-pnf 10369 df-mnf 10370 df-xr 10371 df-ltxr 10372 df-le 10373 df-sub 10562 df-neg 10563 df-nn 11317 df-2 11380 df-3 11381 df-n0 11585 df-z 11671 df-uz 11935 df-fz 12585 df-fzo 12725 df-hash 13375 df-word 13539 df-concat 13595 df-s1 13620 df-s2 13937 df-s3 13938 df-wlks 26853 |
This theorem is referenced by: 2wlkond 27230 2trld 27231 umgr2adedgwlk 27238 |
Copyright terms: Public domain | W3C validator |