MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wlkd Structured version   Visualization version   GIF version

Theorem 2wlkd 27229
Description: Construction of a walk from two given edges in a graph. (Contributed by Alexander van der Vekens, 5-Feb-2018.) (Revised by AV, 23-Jan-2021.) (Proof shortened by AV, 14-Feb-2021.) (Revised by AV, 24-Mar-2021.)
Hypotheses
Ref Expression
2wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2wlkd.f 𝐹 = ⟨“𝐽𝐾”⟩
2wlkd.s (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
2wlkd.n (𝜑 → (𝐴𝐵𝐵𝐶))
2wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
2wlkd.v 𝑉 = (Vtx‘𝐺)
2wlkd.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
2wlkd (𝜑𝐹(Walks‘𝐺)𝑃)

Proof of Theorem 2wlkd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2wlkd.p . . . 4 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2 s3cli 13970 . . . 4 ⟨“𝐴𝐵𝐶”⟩ ∈ Word V
31, 2eqeltri 2878 . . 3 𝑃 ∈ Word V
43a1i 11 . 2 (𝜑𝑃 ∈ Word V)
5 2wlkd.f . . . 4 𝐹 = ⟨“𝐽𝐾”⟩
6 s2cli 13969 . . . 4 ⟨“𝐽𝐾”⟩ ∈ Word V
75, 6eqeltri 2878 . . 3 𝐹 ∈ Word V
87a1i 11 . 2 (𝜑𝐹 ∈ Word V)
91, 52wlkdlem1 27218 . . 3 (♯‘𝑃) = ((♯‘𝐹) + 1)
109a1i 11 . 2 (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1))
11 2wlkd.s . . 3 (𝜑 → (𝐴𝑉𝐵𝑉𝐶𝑉))
12 2wlkd.n . . 3 (𝜑 → (𝐴𝐵𝐵𝐶))
13 2wlkd.e . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
141, 5, 11, 12, 132wlkdlem10 27228 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
151, 5, 11, 122wlkdlem5 27222 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
16 2wlkd.v . . . . 5 𝑉 = (Vtx‘𝐺)
17161vgrex 26241 . . . 4 (𝐴𝑉𝐺 ∈ V)
18173ad2ant1 1164 . . 3 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐺 ∈ V)
1911, 18syl 17 . 2 (𝜑𝐺 ∈ V)
20 2wlkd.i . 2 𝐼 = (iEdg‘𝐺)
211, 5, 112wlkdlem4 27221 . 2 (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
224, 8, 10, 14, 15, 19, 16, 20, 21wlkd 26943 1 (𝜑𝐹(Walks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2975  Vcvv 3389  wss 3773  {cpr 4374   class class class wbr 4847  cfv 6105  (class class class)co 6882  1c1 10229   + caddc 10231  chash 13374  Word cword 13538  ⟨“cs2 13930  ⟨“cs3 13931  Vtxcvtx 26235  iEdgciedg 26236  Walkscwlks 26850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2379  ax-ext 2781  ax-rep 4968  ax-sep 4979  ax-nul 4987  ax-pow 5039  ax-pr 5101  ax-un 7187  ax-cnex 10284  ax-resscn 10285  ax-1cn 10286  ax-icn 10287  ax-addcl 10288  ax-addrcl 10289  ax-mulcl 10290  ax-mulrcl 10291  ax-mulcom 10292  ax-addass 10293  ax-mulass 10294  ax-distr 10295  ax-i2m1 10296  ax-1ne0 10297  ax-1rid 10298  ax-rnegex 10299  ax-rrecex 10300  ax-cnre 10301  ax-pre-lttri 10302  ax-pre-lttrn 10303  ax-pre-ltadd 10304  ax-pre-mulgt0 10305
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-ifp 1087  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2593  df-eu 2611  df-clab 2790  df-cleq 2796  df-clel 2799  df-nfc 2934  df-ne 2976  df-nel 3079  df-ral 3098  df-rex 3099  df-reu 3100  df-rab 3102  df-v 3391  df-sbc 3638  df-csb 3733  df-dif 3776  df-un 3778  df-in 3780  df-ss 3787  df-pss 3789  df-nul 4120  df-if 4282  df-pw 4355  df-sn 4373  df-pr 4375  df-tp 4377  df-op 4379  df-uni 4633  df-int 4672  df-iun 4716  df-br 4848  df-opab 4910  df-mpt 4927  df-tr 4950  df-id 5224  df-eprel 5229  df-po 5237  df-so 5238  df-fr 5275  df-we 5277  df-xp 5322  df-rel 5323  df-cnv 5324  df-co 5325  df-dm 5326  df-rn 5327  df-res 5328  df-ima 5329  df-pred 5902  df-ord 5948  df-on 5949  df-lim 5950  df-suc 5951  df-iota 6068  df-fun 6107  df-fn 6108  df-f 6109  df-f1 6110  df-fo 6111  df-f1o 6112  df-fv 6113  df-riota 6843  df-ov 6885  df-oprab 6886  df-mpt2 6887  df-om 7304  df-1st 7405  df-2nd 7406  df-wrecs 7649  df-recs 7711  df-rdg 7749  df-1o 7803  df-oadd 7807  df-er 7986  df-map 8101  df-pm 8102  df-en 8200  df-dom 8201  df-sdom 8202  df-fin 8203  df-card 9055  df-pnf 10369  df-mnf 10370  df-xr 10371  df-ltxr 10372  df-le 10373  df-sub 10562  df-neg 10563  df-nn 11317  df-2 11380  df-3 11381  df-n0 11585  df-z 11671  df-uz 11935  df-fz 12585  df-fzo 12725  df-hash 13375  df-word 13539  df-concat 13595  df-s1 13620  df-s2 13937  df-s3 13938  df-wlks 26853
This theorem is referenced by:  2wlkond  27230  2trld  27231  umgr2adedgwlk  27238
  Copyright terms: Public domain W3C validator