Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim1lem5 Structured version   Visualization version   GIF version

Theorem 3dim1lem5 39423
Description: Lemma for 3dim1 39424. (Contributed by NM, 26-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dim1lem5 (((𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑤 ((𝑃 𝑢) 𝑣))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
Distinct variable groups:   𝑟,𝑞,𝑠,𝐴   ,𝑟,𝑠   𝑣,𝑢,𝑤,𝐴,𝑞   ,𝑞,𝑢,𝑣,𝑤   𝑢,𝐾,𝑣,𝑤   ,𝑞   𝑢,𝑟,𝑣,𝑤, ,𝑠   𝑃,𝑞,𝑟,𝑠,𝑢,𝑣,𝑤
Allowed substitution hints:   𝐾(𝑠,𝑟,𝑞)

Proof of Theorem 3dim1lem5
StepHypRef Expression
1 neeq2 3010 . . 3 (𝑞 = 𝑢 → (𝑃𝑞𝑃𝑢))
2 oveq2 7456 . . . . 5 (𝑞 = 𝑢 → (𝑃 𝑞) = (𝑃 𝑢))
32breq2d 5178 . . . 4 (𝑞 = 𝑢 → (𝑟 (𝑃 𝑞) ↔ 𝑟 (𝑃 𝑢)))
43notbid 318 . . 3 (𝑞 = 𝑢 → (¬ 𝑟 (𝑃 𝑞) ↔ ¬ 𝑟 (𝑃 𝑢)))
52oveq1d 7463 . . . . 5 (𝑞 = 𝑢 → ((𝑃 𝑞) 𝑟) = ((𝑃 𝑢) 𝑟))
65breq2d 5178 . . . 4 (𝑞 = 𝑢 → (𝑠 ((𝑃 𝑞) 𝑟) ↔ 𝑠 ((𝑃 𝑢) 𝑟)))
76notbid 318 . . 3 (𝑞 = 𝑢 → (¬ 𝑠 ((𝑃 𝑞) 𝑟) ↔ ¬ 𝑠 ((𝑃 𝑢) 𝑟)))
81, 4, 73anbi123d 1436 . 2 (𝑞 = 𝑢 → ((𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)) ↔ (𝑃𝑢 ∧ ¬ 𝑟 (𝑃 𝑢) ∧ ¬ 𝑠 ((𝑃 𝑢) 𝑟))))
9 breq1 5169 . . . 4 (𝑟 = 𝑣 → (𝑟 (𝑃 𝑢) ↔ 𝑣 (𝑃 𝑢)))
109notbid 318 . . 3 (𝑟 = 𝑣 → (¬ 𝑟 (𝑃 𝑢) ↔ ¬ 𝑣 (𝑃 𝑢)))
11 oveq2 7456 . . . . 5 (𝑟 = 𝑣 → ((𝑃 𝑢) 𝑟) = ((𝑃 𝑢) 𝑣))
1211breq2d 5178 . . . 4 (𝑟 = 𝑣 → (𝑠 ((𝑃 𝑢) 𝑟) ↔ 𝑠 ((𝑃 𝑢) 𝑣)))
1312notbid 318 . . 3 (𝑟 = 𝑣 → (¬ 𝑠 ((𝑃 𝑢) 𝑟) ↔ ¬ 𝑠 ((𝑃 𝑢) 𝑣)))
1410, 133anbi23d 1439 . 2 (𝑟 = 𝑣 → ((𝑃𝑢 ∧ ¬ 𝑟 (𝑃 𝑢) ∧ ¬ 𝑠 ((𝑃 𝑢) 𝑟)) ↔ (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑠 ((𝑃 𝑢) 𝑣))))
15 breq1 5169 . . . 4 (𝑠 = 𝑤 → (𝑠 ((𝑃 𝑢) 𝑣) ↔ 𝑤 ((𝑃 𝑢) 𝑣)))
1615notbid 318 . . 3 (𝑠 = 𝑤 → (¬ 𝑠 ((𝑃 𝑢) 𝑣) ↔ ¬ 𝑤 ((𝑃 𝑢) 𝑣)))
17163anbi3d 1442 . 2 (𝑠 = 𝑤 → ((𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑠 ((𝑃 𝑢) 𝑣)) ↔ (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑤 ((𝑃 𝑢) 𝑣))))
188, 14, 17rspc3ev 3652 1 (((𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑤 ((𝑃 𝑢) 𝑣))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  lecple 17318  joincjn 18381  Atomscatm 39219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  3dim1  39424
  Copyright terms: Public domain W3C validator