Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim1lem5 Structured version   Visualization version   GIF version

Theorem 3dim1lem5 35486
Description: Lemma for 3dim1 35487. (Contributed by NM, 26-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dim1lem5 (((𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑤 ((𝑃 𝑢) 𝑣))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
Distinct variable groups:   𝑟,𝑞,𝑠,𝐴   ,𝑟,𝑠   𝑣,𝑢,𝑤,𝐴,𝑞   ,𝑞,𝑢,𝑣,𝑤   𝑢,𝐾,𝑣,𝑤   ,𝑞   𝑢,𝑟,𝑣,𝑤, ,𝑠   𝑃,𝑞,𝑟,𝑠,𝑢,𝑣,𝑤
Allowed substitution hints:   𝐾(𝑠,𝑟,𝑞)

Proof of Theorem 3dim1lem5
StepHypRef Expression
1 neeq2 3035 . . 3 (𝑞 = 𝑢 → (𝑃𝑞𝑃𝑢))
2 oveq2 6887 . . . . 5 (𝑞 = 𝑢 → (𝑃 𝑞) = (𝑃 𝑢))
32breq2d 4856 . . . 4 (𝑞 = 𝑢 → (𝑟 (𝑃 𝑞) ↔ 𝑟 (𝑃 𝑢)))
43notbid 310 . . 3 (𝑞 = 𝑢 → (¬ 𝑟 (𝑃 𝑞) ↔ ¬ 𝑟 (𝑃 𝑢)))
52oveq1d 6894 . . . . 5 (𝑞 = 𝑢 → ((𝑃 𝑞) 𝑟) = ((𝑃 𝑢) 𝑟))
65breq2d 4856 . . . 4 (𝑞 = 𝑢 → (𝑠 ((𝑃 𝑞) 𝑟) ↔ 𝑠 ((𝑃 𝑢) 𝑟)))
76notbid 310 . . 3 (𝑞 = 𝑢 → (¬ 𝑠 ((𝑃 𝑞) 𝑟) ↔ ¬ 𝑠 ((𝑃 𝑢) 𝑟)))
81, 4, 73anbi123d 1561 . 2 (𝑞 = 𝑢 → ((𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)) ↔ (𝑃𝑢 ∧ ¬ 𝑟 (𝑃 𝑢) ∧ ¬ 𝑠 ((𝑃 𝑢) 𝑟))))
9 breq1 4847 . . . 4 (𝑟 = 𝑣 → (𝑟 (𝑃 𝑢) ↔ 𝑣 (𝑃 𝑢)))
109notbid 310 . . 3 (𝑟 = 𝑣 → (¬ 𝑟 (𝑃 𝑢) ↔ ¬ 𝑣 (𝑃 𝑢)))
11 oveq2 6887 . . . . 5 (𝑟 = 𝑣 → ((𝑃 𝑢) 𝑟) = ((𝑃 𝑢) 𝑣))
1211breq2d 4856 . . . 4 (𝑟 = 𝑣 → (𝑠 ((𝑃 𝑢) 𝑟) ↔ 𝑠 ((𝑃 𝑢) 𝑣)))
1312notbid 310 . . 3 (𝑟 = 𝑣 → (¬ 𝑠 ((𝑃 𝑢) 𝑟) ↔ ¬ 𝑠 ((𝑃 𝑢) 𝑣)))
1410, 133anbi23d 1564 . 2 (𝑟 = 𝑣 → ((𝑃𝑢 ∧ ¬ 𝑟 (𝑃 𝑢) ∧ ¬ 𝑠 ((𝑃 𝑢) 𝑟)) ↔ (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑠 ((𝑃 𝑢) 𝑣))))
15 breq1 4847 . . . 4 (𝑠 = 𝑤 → (𝑠 ((𝑃 𝑢) 𝑣) ↔ 𝑤 ((𝑃 𝑢) 𝑣)))
1615notbid 310 . . 3 (𝑠 = 𝑤 → (¬ 𝑠 ((𝑃 𝑢) 𝑣) ↔ ¬ 𝑤 ((𝑃 𝑢) 𝑣)))
17163anbi3d 1567 . 2 (𝑠 = 𝑤 → ((𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑠 ((𝑃 𝑢) 𝑣)) ↔ (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑤 ((𝑃 𝑢) 𝑣))))
188, 14, 17rspc3ev 3515 1 (((𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑤 ((𝑃 𝑢) 𝑣))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2972  wrex 3091   class class class wbr 4844  cfv 6102  (class class class)co 6879  lecple 16273  joincjn 17258  Atomscatm 35283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-rex 3096  df-rab 3099  df-v 3388  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-br 4845  df-iota 6065  df-fv 6110  df-ov 6882
This theorem is referenced by:  3dim1  35487
  Copyright terms: Public domain W3C validator