Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim1lem5 Structured version   Visualization version   GIF version

Theorem 3dim1lem5 39433
Description: Lemma for 3dim1 39434. (Contributed by NM, 26-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dim1lem5 (((𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑤 ((𝑃 𝑢) 𝑣))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
Distinct variable groups:   𝑟,𝑞,𝑠,𝐴   ,𝑟,𝑠   𝑣,𝑢,𝑤,𝐴,𝑞   ,𝑞,𝑢,𝑣,𝑤   𝑢,𝐾,𝑣,𝑤   ,𝑞   𝑢,𝑟,𝑣,𝑤, ,𝑠   𝑃,𝑞,𝑟,𝑠,𝑢,𝑣,𝑤
Allowed substitution hints:   𝐾(𝑠,𝑟,𝑞)

Proof of Theorem 3dim1lem5
StepHypRef Expression
1 neeq2 2988 . . 3 (𝑞 = 𝑢 → (𝑃𝑞𝑃𝑢))
2 oveq2 7377 . . . . 5 (𝑞 = 𝑢 → (𝑃 𝑞) = (𝑃 𝑢))
32breq2d 5114 . . . 4 (𝑞 = 𝑢 → (𝑟 (𝑃 𝑞) ↔ 𝑟 (𝑃 𝑢)))
43notbid 318 . . 3 (𝑞 = 𝑢 → (¬ 𝑟 (𝑃 𝑞) ↔ ¬ 𝑟 (𝑃 𝑢)))
52oveq1d 7384 . . . . 5 (𝑞 = 𝑢 → ((𝑃 𝑞) 𝑟) = ((𝑃 𝑢) 𝑟))
65breq2d 5114 . . . 4 (𝑞 = 𝑢 → (𝑠 ((𝑃 𝑞) 𝑟) ↔ 𝑠 ((𝑃 𝑢) 𝑟)))
76notbid 318 . . 3 (𝑞 = 𝑢 → (¬ 𝑠 ((𝑃 𝑞) 𝑟) ↔ ¬ 𝑠 ((𝑃 𝑢) 𝑟)))
81, 4, 73anbi123d 1438 . 2 (𝑞 = 𝑢 → ((𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)) ↔ (𝑃𝑢 ∧ ¬ 𝑟 (𝑃 𝑢) ∧ ¬ 𝑠 ((𝑃 𝑢) 𝑟))))
9 breq1 5105 . . . 4 (𝑟 = 𝑣 → (𝑟 (𝑃 𝑢) ↔ 𝑣 (𝑃 𝑢)))
109notbid 318 . . 3 (𝑟 = 𝑣 → (¬ 𝑟 (𝑃 𝑢) ↔ ¬ 𝑣 (𝑃 𝑢)))
11 oveq2 7377 . . . . 5 (𝑟 = 𝑣 → ((𝑃 𝑢) 𝑟) = ((𝑃 𝑢) 𝑣))
1211breq2d 5114 . . . 4 (𝑟 = 𝑣 → (𝑠 ((𝑃 𝑢) 𝑟) ↔ 𝑠 ((𝑃 𝑢) 𝑣)))
1312notbid 318 . . 3 (𝑟 = 𝑣 → (¬ 𝑠 ((𝑃 𝑢) 𝑟) ↔ ¬ 𝑠 ((𝑃 𝑢) 𝑣)))
1410, 133anbi23d 1441 . 2 (𝑟 = 𝑣 → ((𝑃𝑢 ∧ ¬ 𝑟 (𝑃 𝑢) ∧ ¬ 𝑠 ((𝑃 𝑢) 𝑟)) ↔ (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑠 ((𝑃 𝑢) 𝑣))))
15 breq1 5105 . . . 4 (𝑠 = 𝑤 → (𝑠 ((𝑃 𝑢) 𝑣) ↔ 𝑤 ((𝑃 𝑢) 𝑣)))
1615notbid 318 . . 3 (𝑠 = 𝑤 → (¬ 𝑠 ((𝑃 𝑢) 𝑣) ↔ ¬ 𝑤 ((𝑃 𝑢) 𝑣)))
17163anbi3d 1444 . 2 (𝑠 = 𝑤 → ((𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑠 ((𝑃 𝑢) 𝑣)) ↔ (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑤 ((𝑃 𝑢) 𝑣))))
188, 14, 17rspc3ev 3602 1 (((𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑤 ((𝑃 𝑢) 𝑣))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  lecple 17203  joincjn 18248  Atomscatm 39229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372
This theorem is referenced by:  3dim1  39434
  Copyright terms: Public domain W3C validator