Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anbi23d | Structured version Visualization version GIF version |
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3anbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
3anbi23d | ⊢ (𝜑 → ((𝜂 ∧ 𝜓 ∧ 𝜃) ↔ (𝜂 ∧ 𝜒 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 261 | . 2 ⊢ (𝜑 → (𝜂 ↔ 𝜂)) | |
2 | 3anbi12d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 3anbi12d.2 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
4 | 1, 2, 3 | 3anbi123d 1435 | 1 ⊢ (𝜑 → ((𝜂 ∧ 𝜓 ∧ 𝜃) ↔ (𝜂 ∧ 𝜒 ∧ 𝜏))) |
Copyright terms: Public domain | W3C validator |