Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onzsl | Structured version Visualization version GIF version |
Description: An ordinal number is zero, a successor ordinal, or a limit ordinal number. (Contributed by NM, 1-Oct-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
onzsl | ⊢ (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3417 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ V) | |
2 | eloni 6183 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | ordzsl 7582 | . . . 4 ⊢ (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) | |
4 | 3mix1 1331 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) | |
5 | 4 | adantl 485 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐴 = ∅) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
6 | 3mix2 1332 | . . . . . 6 ⊢ (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) | |
7 | 6 | adantl 485 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∃𝑥 ∈ On 𝐴 = suc 𝑥) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
8 | 3mix3 1333 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) | |
9 | 5, 7, 8 | 3jaodan 1431 | . . . 4 ⊢ ((𝐴 ∈ V ∧ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
10 | 3, 9 | sylan2b 597 | . . 3 ⊢ ((𝐴 ∈ V ∧ Ord 𝐴) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
11 | 1, 2, 10 | syl2anc 587 | . 2 ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
12 | 0elon 6226 | . . . 4 ⊢ ∅ ∈ On | |
13 | eleq1 2821 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ∈ On ↔ ∅ ∈ On)) | |
14 | 12, 13 | mpbiri 261 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ∈ On) |
15 | suceloni 7550 | . . . . 5 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
16 | eleq1 2821 | . . . . 5 ⊢ (𝐴 = suc 𝑥 → (𝐴 ∈ On ↔ suc 𝑥 ∈ On)) | |
17 | 15, 16 | syl5ibrcom 250 | . . . 4 ⊢ (𝑥 ∈ On → (𝐴 = suc 𝑥 → 𝐴 ∈ On)) |
18 | 17 | rexlimiv 3191 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 = suc 𝑥 → 𝐴 ∈ On) |
19 | limelon 6236 | . . 3 ⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On) | |
20 | 14, 18, 19 | 3jaoi 1428 | . 2 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)) → 𝐴 ∈ On) |
21 | 11, 20 | impbii 212 | 1 ⊢ (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∨ w3o 1087 = wceq 1542 ∈ wcel 2114 ∃wrex 3055 Vcvv 3399 ∅c0 4212 Ord word 6172 Oncon0 6173 Lim wlim 6174 suc csuc 6175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-11 2162 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pr 5297 ax-un 7482 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3401 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-tr 5138 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 |
This theorem is referenced by: oawordeulem 8214 r1pwss 9289 r1val1 9291 pwcfsdom 10086 winalim2 10199 rankcf 10280 dfrdg4 33899 |
Copyright terms: Public domain | W3C validator |