MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onzsl Structured version   Visualization version   GIF version

Theorem onzsl 7825
Description: An ordinal number is zero, a successor ordinal, or a limit ordinal number. (Contributed by NM, 1-Oct-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
onzsl (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem onzsl
StepHypRef Expression
1 elex 3471 . . 3 (𝐴 ∈ On → 𝐴 ∈ V)
2 eloni 6345 . . 3 (𝐴 ∈ On → Ord 𝐴)
3 ordzsl 7824 . . . 4 (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴))
4 3mix1 1331 . . . . . 6 (𝐴 = ∅ → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
54adantl 481 . . . . 5 ((𝐴 ∈ V ∧ 𝐴 = ∅) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
6 3mix2 1332 . . . . . 6 (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
76adantl 481 . . . . 5 ((𝐴 ∈ V ∧ ∃𝑥 ∈ On 𝐴 = suc 𝑥) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
8 3mix3 1333 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
95, 7, 83jaodan 1433 . . . 4 ((𝐴 ∈ V ∧ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
103, 9sylan2b 594 . . 3 ((𝐴 ∈ V ∧ Ord 𝐴) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
111, 2, 10syl2anc 584 . 2 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
12 0elon 6390 . . . 4 ∅ ∈ On
13 eleq1 2817 . . . 4 (𝐴 = ∅ → (𝐴 ∈ On ↔ ∅ ∈ On))
1412, 13mpbiri 258 . . 3 (𝐴 = ∅ → 𝐴 ∈ On)
15 onsuc 7790 . . . . 5 (𝑥 ∈ On → suc 𝑥 ∈ On)
16 eleq1 2817 . . . . 5 (𝐴 = suc 𝑥 → (𝐴 ∈ On ↔ suc 𝑥 ∈ On))
1715, 16syl5ibrcom 247 . . . 4 (𝑥 ∈ On → (𝐴 = suc 𝑥𝐴 ∈ On))
1817rexlimiv 3128 . . 3 (∃𝑥 ∈ On 𝐴 = suc 𝑥𝐴 ∈ On)
19 limelon 6400 . . 3 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On)
2014, 18, 193jaoi 1430 . 2 ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)) → 𝐴 ∈ On)
2111, 20impbii 209 1 (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  c0 4299  Ord word 6334  Oncon0 6335  Lim wlim 6336  suc csuc 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341
This theorem is referenced by:  oawordeulem  8521  r1pwss  9744  r1val1  9746  pwcfsdom  10543  winalim2  10656  rankcf  10737  dfrdg4  35946  naddwordnexlem4  43397
  Copyright terms: Public domain W3C validator