Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onzsl | Structured version Visualization version GIF version |
Description: An ordinal number is zero, a successor ordinal, or a limit ordinal number. (Contributed by NM, 1-Oct-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
onzsl | ⊢ (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ V) | |
2 | eloni 6261 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | ordzsl 7667 | . . . 4 ⊢ (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) | |
4 | 3mix1 1328 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) | |
5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐴 = ∅) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
6 | 3mix2 1329 | . . . . . 6 ⊢ (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) | |
7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∃𝑥 ∈ On 𝐴 = suc 𝑥) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
8 | 3mix3 1330 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) | |
9 | 5, 7, 8 | 3jaodan 1428 | . . . 4 ⊢ ((𝐴 ∈ V ∧ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
10 | 3, 9 | sylan2b 593 | . . 3 ⊢ ((𝐴 ∈ V ∧ Ord 𝐴) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
11 | 1, 2, 10 | syl2anc 583 | . 2 ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
12 | 0elon 6304 | . . . 4 ⊢ ∅ ∈ On | |
13 | eleq1 2826 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ∈ On ↔ ∅ ∈ On)) | |
14 | 12, 13 | mpbiri 257 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ∈ On) |
15 | suceloni 7635 | . . . . 5 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
16 | eleq1 2826 | . . . . 5 ⊢ (𝐴 = suc 𝑥 → (𝐴 ∈ On ↔ suc 𝑥 ∈ On)) | |
17 | 15, 16 | syl5ibrcom 246 | . . . 4 ⊢ (𝑥 ∈ On → (𝐴 = suc 𝑥 → 𝐴 ∈ On)) |
18 | 17 | rexlimiv 3208 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 = suc 𝑥 → 𝐴 ∈ On) |
19 | limelon 6314 | . . 3 ⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On) | |
20 | 14, 18, 19 | 3jaoi 1425 | . 2 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)) → 𝐴 ∈ On) |
21 | 11, 20 | impbii 208 | 1 ⊢ (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ w3o 1084 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ∅c0 4253 Ord word 6250 Oncon0 6251 Lim wlim 6252 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 |
This theorem is referenced by: oawordeulem 8347 r1pwss 9473 r1val1 9475 pwcfsdom 10270 winalim2 10383 rankcf 10464 dfrdg4 34180 |
Copyright terms: Public domain | W3C validator |