| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onzsl | Structured version Visualization version GIF version | ||
| Description: An ordinal number is zero, a successor ordinal, or a limit ordinal number. (Contributed by NM, 1-Oct-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| onzsl | ⊢ (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3501 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ V) | |
| 2 | eloni 6394 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 3 | ordzsl 7866 | . . . 4 ⊢ (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) | |
| 4 | 3mix1 1331 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) | |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐴 = ∅) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
| 6 | 3mix2 1332 | . . . . . 6 ⊢ (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) | |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∃𝑥 ∈ On 𝐴 = suc 𝑥) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
| 8 | 3mix3 1333 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) | |
| 9 | 5, 7, 8 | 3jaodan 1433 | . . . 4 ⊢ ((𝐴 ∈ V ∧ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
| 10 | 3, 9 | sylan2b 594 | . . 3 ⊢ ((𝐴 ∈ V ∧ Ord 𝐴) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
| 11 | 1, 2, 10 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
| 12 | 0elon 6438 | . . . 4 ⊢ ∅ ∈ On | |
| 13 | eleq1 2829 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ∈ On ↔ ∅ ∈ On)) | |
| 14 | 12, 13 | mpbiri 258 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ∈ On) |
| 15 | onsuc 7831 | . . . . 5 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
| 16 | eleq1 2829 | . . . . 5 ⊢ (𝐴 = suc 𝑥 → (𝐴 ∈ On ↔ suc 𝑥 ∈ On)) | |
| 17 | 15, 16 | syl5ibrcom 247 | . . . 4 ⊢ (𝑥 ∈ On → (𝐴 = suc 𝑥 → 𝐴 ∈ On)) |
| 18 | 17 | rexlimiv 3148 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 = suc 𝑥 → 𝐴 ∈ On) |
| 19 | limelon 6448 | . . 3 ⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On) | |
| 20 | 14, 18, 19 | 3jaoi 1430 | . 2 ⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)) → 𝐴 ∈ On) |
| 21 | 11, 20 | impbii 209 | 1 ⊢ (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ w3o 1086 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 Vcvv 3480 ∅c0 4333 Ord word 6383 Oncon0 6384 Lim wlim 6385 suc csuc 6386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 |
| This theorem is referenced by: oawordeulem 8592 r1pwss 9824 r1val1 9826 pwcfsdom 10623 winalim2 10736 rankcf 10817 dfrdg4 35952 naddwordnexlem4 43414 |
| Copyright terms: Public domain | W3C validator |