Proof of Theorem onzsl
Step | Hyp | Ref
| Expression |
1 | | elex 3450 |
. . 3
⊢ (𝐴 ∈ On → 𝐴 ∈ V) |
2 | | eloni 6276 |
. . 3
⊢ (𝐴 ∈ On → Ord 𝐴) |
3 | | ordzsl 7692 |
. . . 4
⊢ (Ord
𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) |
4 | | 3mix1 1329 |
. . . . . 6
⊢ (𝐴 = ∅ → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
5 | 4 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝐴 = ∅) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
6 | | 3mix2 1330 |
. . . . . 6
⊢
(∃𝑥 ∈ On
𝐴 = suc 𝑥 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
7 | 6 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ ∃𝑥 ∈ On 𝐴 = suc 𝑥) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
8 | | 3mix3 1331 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
9 | 5, 7, 8 | 3jaodan 1429 |
. . . 4
⊢ ((𝐴 ∈ V ∧ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
10 | 3, 9 | sylan2b 594 |
. . 3
⊢ ((𝐴 ∈ V ∧ Ord 𝐴) → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
11 | 1, 2, 10 | syl2anc 584 |
. 2
⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
12 | | 0elon 6319 |
. . . 4
⊢ ∅
∈ On |
13 | | eleq1 2826 |
. . . 4
⊢ (𝐴 = ∅ → (𝐴 ∈ On ↔ ∅ ∈
On)) |
14 | 12, 13 | mpbiri 257 |
. . 3
⊢ (𝐴 = ∅ → 𝐴 ∈ On) |
15 | | suceloni 7659 |
. . . . 5
⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) |
16 | | eleq1 2826 |
. . . . 5
⊢ (𝐴 = suc 𝑥 → (𝐴 ∈ On ↔ suc 𝑥 ∈ On)) |
17 | 15, 16 | syl5ibrcom 246 |
. . . 4
⊢ (𝑥 ∈ On → (𝐴 = suc 𝑥 → 𝐴 ∈ On)) |
18 | 17 | rexlimiv 3209 |
. . 3
⊢
(∃𝑥 ∈ On
𝐴 = suc 𝑥 → 𝐴 ∈ On) |
19 | | limelon 6329 |
. . 3
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On) |
20 | 14, 18, 19 | 3jaoi 1426 |
. 2
⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)) → 𝐴 ∈ On) |
21 | 11, 20 | impbii 208 |
1
⊢ (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |