MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colinearalg Structured version   Visualization version   GIF version

Theorem colinearalg 26259
Description: An algebraic characterization of colinearity. Note the similarity to brbtwn2 26254. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
colinearalg ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖,𝑗

Proof of Theorem colinearalg
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 brbtwn2 26254 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
2 brbtwn2 26254 . . . . 5 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖))))))
323comr 1116 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖))))))
4 colinearalglem3 26257 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
543comr 1116 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
65anbi2d 622 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
73, 6bitrd 271 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
8 brbtwn2 26254 . . . . 5 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑗) − (𝐶𝑗))) = (((𝐴𝑗) − (𝐶𝑗)) · ((𝐵𝑖) − (𝐶𝑖))))))
9 colinearalglem2 26256 . . . . . 6 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑗) − (𝐶𝑗))) = (((𝐴𝑗) − (𝐶𝑗)) · ((𝐵𝑖) − (𝐶𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
109anbi2d 622 . . . . 5 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑗) − (𝐶𝑗))) = (((𝐴𝑗) − (𝐶𝑗)) · ((𝐵𝑖) − (𝐶𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
118, 10bitrd 271 . . . 4 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
12113coml 1118 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
131, 7, 123orbi123d 1508 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) ↔ ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))))
14 fveecn 26251 . . . . . . . . . . . . 13 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
15 fveecn 26251 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
16 subid 10642 . . . . . . . . . . . . . . . 16 ((𝐶𝑖) ∈ ℂ → ((𝐶𝑖) − (𝐶𝑖)) = 0)
1716oveq2d 6938 . . . . . . . . . . . . . . 15 ((𝐶𝑖) ∈ ℂ → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) = (((𝐵𝑖) − (𝐶𝑖)) · 0))
1817adantl 475 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) = (((𝐵𝑖) − (𝐶𝑖)) · 0))
19 subcl 10621 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℂ)
2019mul01d 10575 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → (((𝐵𝑖) − (𝐶𝑖)) · 0) = 0)
2118, 20eqtrd 2814 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) = 0)
2214, 15, 21syl2an 589 . . . . . . . . . . . 12 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) = 0)
2322anandirs 669 . . . . . . . . . . 11 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) = 0)
24 0le0 11483 . . . . . . . . . . 11 0 ≤ 0
2523, 24syl6eqbr 4925 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) ≤ 0)
2625ralrimiva 3148 . . . . . . . . 9 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) ≤ 0)
27263adant1 1121 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) ≤ 0)
28 fveq1 6445 . . . . . . . . . . . 12 (𝐶 = 𝐴 → (𝐶𝑖) = (𝐴𝑖))
2928oveq2d 6938 . . . . . . . . . . 11 (𝐶 = 𝐴 → ((𝐵𝑖) − (𝐶𝑖)) = ((𝐵𝑖) − (𝐴𝑖)))
3028oveq2d 6938 . . . . . . . . . . 11 (𝐶 = 𝐴 → ((𝐶𝑖) − (𝐶𝑖)) = ((𝐶𝑖) − (𝐴𝑖)))
3129, 30oveq12d 6940 . . . . . . . . . 10 (𝐶 = 𝐴 → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) = (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))))
3231breq1d 4896 . . . . . . . . 9 (𝐶 = 𝐴 → ((((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) ≤ 0 ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
3332ralbidv 3168 . . . . . . . 8 (𝐶 = 𝐴 → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
3427, 33syl5ibcom 237 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶 = 𝐴 → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
35 3mix1 1386 . . . . . . 7 (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0))
3634, 35syl6 35 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶 = 𝐴 → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
3736a1dd 50 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶 = 𝐴 → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0))))
38 simp3 1129 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
39 simp1 1127 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
40 eqeefv 26252 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝐶 = 𝐴 ↔ ∀𝑝 ∈ (1...𝑁)(𝐶𝑝) = (𝐴𝑝)))
4138, 39, 40syl2anc 579 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶 = 𝐴 ↔ ∀𝑝 ∈ (1...𝑁)(𝐶𝑝) = (𝐴𝑝)))
4241necon3abid 3005 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶𝐴 ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐶𝑝) = (𝐴𝑝)))
43 df-ne 2970 . . . . . . . . 9 ((𝐶𝑝) ≠ (𝐴𝑝) ↔ ¬ (𝐶𝑝) = (𝐴𝑝))
4443rexbii 3224 . . . . . . . 8 (∃𝑝 ∈ (1...𝑁)(𝐶𝑝) ≠ (𝐴𝑝) ↔ ∃𝑝 ∈ (1...𝑁) ¬ (𝐶𝑝) = (𝐴𝑝))
45 rexnal 3176 . . . . . . . 8 (∃𝑝 ∈ (1...𝑁) ¬ (𝐶𝑝) = (𝐴𝑝) ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐶𝑝) = (𝐴𝑝))
4644, 45bitr2i 268 . . . . . . 7 (¬ ∀𝑝 ∈ (1...𝑁)(𝐶𝑝) = (𝐴𝑝) ↔ ∃𝑝 ∈ (1...𝑁)(𝐶𝑝) ≠ (𝐴𝑝))
4742, 46syl6bb 279 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶𝐴 ↔ ∃𝑝 ∈ (1...𝑁)(𝐶𝑝) ≠ (𝐴𝑝)))
48 ralcom 3284 . . . . . . . 8 (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ∀𝑗 ∈ (1...𝑁)∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))
49 fveq2 6446 . . . . . . . . . . . . . . 15 (𝑗 = 𝑝 → (𝐶𝑗) = (𝐶𝑝))
50 fveq2 6446 . . . . . . . . . . . . . . 15 (𝑗 = 𝑝 → (𝐴𝑗) = (𝐴𝑝))
5149, 50oveq12d 6940 . . . . . . . . . . . . . 14 (𝑗 = 𝑝 → ((𝐶𝑗) − (𝐴𝑗)) = ((𝐶𝑝) − (𝐴𝑝)))
5251oveq2d 6938 . . . . . . . . . . . . 13 (𝑗 = 𝑝 → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))))
53 fveq2 6446 . . . . . . . . . . . . . . 15 (𝑗 = 𝑝 → (𝐵𝑗) = (𝐵𝑝))
5453, 50oveq12d 6940 . . . . . . . . . . . . . 14 (𝑗 = 𝑝 → ((𝐵𝑗) − (𝐴𝑗)) = ((𝐵𝑝) − (𝐴𝑝)))
5554oveq1d 6937 . . . . . . . . . . . . 13 (𝑗 = 𝑝 → (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))))
5652, 55eqeq12d 2793 . . . . . . . . . . . 12 (𝑗 = 𝑝 → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
5756ralbidv 3168 . . . . . . . . . . 11 (𝑗 = 𝑝 → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
5857rspcv 3507 . . . . . . . . . 10 (𝑝 ∈ (1...𝑁) → (∀𝑗 ∈ (1...𝑁)∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
5958ad2antrl 718 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑗 ∈ (1...𝑁)∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
60 fveere 26250 . . . . . . . . . . . . . 14 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐴𝑝) ∈ ℝ)
61603ad2antl1 1193 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑝 ∈ (1...𝑁)) → (𝐴𝑝) ∈ ℝ)
62 fveere 26250 . . . . . . . . . . . . . 14 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐵𝑝) ∈ ℝ)
63623ad2antl2 1194 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑝 ∈ (1...𝑁)) → (𝐵𝑝) ∈ ℝ)
64 fveere 26250 . . . . . . . . . . . . . 14 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐶𝑝) ∈ ℝ)
65643ad2antl3 1195 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑝 ∈ (1...𝑁)) → (𝐶𝑝) ∈ ℝ)
6661, 63, 653jca 1119 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑝 ∈ (1...𝑁)) → ((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ))
6766anim1i 608 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑝 ∈ (1...𝑁)) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)))
6867anasss 460 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)))
69 fveecn 26251 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
70693ad2antl1 1193 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
71143ad2antl2 1194 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
72153ad2antl3 1195 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
7370, 71, 723jca 1119 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ))
7473adantlr 705 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ))
75 recn 10362 . . . . . . . . . . . . . . . 16 ((𝐴𝑝) ∈ ℝ → (𝐴𝑝) ∈ ℂ)
76 recn 10362 . . . . . . . . . . . . . . . 16 ((𝐵𝑝) ∈ ℝ → (𝐵𝑝) ∈ ℂ)
77 recn 10362 . . . . . . . . . . . . . . . 16 ((𝐶𝑝) ∈ ℝ → (𝐶𝑝) ∈ ℂ)
7875, 76, 773anim123i 1151 . . . . . . . . . . . . . . 15 (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ))
7978adantr 474 . . . . . . . . . . . . . 14 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ))
8079ad2antlr 717 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ))
81 simplrr 768 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑝) ≠ (𝐴𝑝))
82 eqcom 2785 . . . . . . . . . . . . . 14 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) ↔ (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) = (𝐵𝑖))
83 simp12 1218 . . . . . . . . . . . . . . . 16 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐵𝑖) ∈ ℂ)
84 simp11 1217 . . . . . . . . . . . . . . . 16 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐴𝑖) ∈ ℂ)
85 simp22 1221 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐵𝑝) ∈ ℂ)
86 simp21 1220 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐴𝑝) ∈ ℂ)
8785, 86subcld 10734 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℂ)
88 simp23 1222 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐶𝑝) ∈ ℂ)
8988, 86subcld 10734 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐶𝑝) − (𝐴𝑝)) ∈ ℂ)
90 simpr3 1209 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ)) → (𝐶𝑝) ∈ ℂ)
91 simpr1 1205 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ)) → (𝐴𝑝) ∈ ℂ)
9290, 91subeq0ad 10744 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ)) → (((𝐶𝑝) − (𝐴𝑝)) = 0 ↔ (𝐶𝑝) = (𝐴𝑝)))
9392necon3bid 3013 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ)) → (((𝐶𝑝) − (𝐴𝑝)) ≠ 0 ↔ (𝐶𝑝) ≠ (𝐴𝑝)))
9493biimp3ar 1543 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐶𝑝) − (𝐴𝑝)) ≠ 0)
9587, 89, 94divcld 11151 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) ∈ ℂ)
96 simp13 1219 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐶𝑖) ∈ ℂ)
9796, 84subcld 10734 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐶𝑖) − (𝐴𝑖)) ∈ ℂ)
9895, 97mulcld 10397 . . . . . . . . . . . . . . . 16 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ)
99 subadd2 10626 . . . . . . . . . . . . . . . . 17 (((𝐵𝑖) ∈ ℂ ∧ (𝐴𝑖) ∈ ℂ ∧ ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ) → (((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) = (𝐵𝑖)))
10099bicomd 215 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℂ ∧ (𝐴𝑖) ∈ ℂ ∧ ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ) → ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) = (𝐵𝑖) ↔ ((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖)))))
10183, 84, 98, 100syl3anc 1439 . . . . . . . . . . . . . . 15 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) = (𝐵𝑖) ↔ ((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖)))))
10287, 97, 89, 94div23d 11188 . . . . . . . . . . . . . . . 16 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) = ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))))
103102eqeq2d 2788 . . . . . . . . . . . . . . 15 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) ↔ ((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖)))))
104 eqcom 2785 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) ↔ ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) = ((𝐵𝑖) − (𝐴𝑖)))
10587, 97mulcld 10397 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ)
10683, 84subcld 10734 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐵𝑖) − (𝐴𝑖)) ∈ ℂ)
107105, 89, 106, 94divmuld 11173 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) = ((𝐵𝑖) − (𝐴𝑖)) ↔ (((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑖) − (𝐴𝑖))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
10889, 106mulcomd 10398 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑖) − (𝐴𝑖))) = (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))))
109108eqeq1d 2780 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑖) − (𝐴𝑖))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
110107, 109bitrd 271 . . . . . . . . . . . . . . . 16 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) = ((𝐵𝑖) − (𝐴𝑖)) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
111104, 110syl5bb 275 . . . . . . . . . . . . . . 15 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
112101, 103, 1113bitr2d 299 . . . . . . . . . . . . . 14 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) = (𝐵𝑖) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
11382, 112syl5bb 275 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
11474, 80, 81, 113syl3anc 1439 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
115114ralbidva 3167 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
116 3simpb 1141 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
117 simpl2 1201 . . . . . . . . . . . . . 14 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐵𝑝) ∈ ℝ)
118 simpl1 1199 . . . . . . . . . . . . . 14 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐴𝑝) ∈ ℝ)
119117, 118resubcld 10803 . . . . . . . . . . . . 13 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℝ)
120 simpl3 1203 . . . . . . . . . . . . . 14 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐶𝑝) ∈ ℝ)
121120, 118resubcld 10803 . . . . . . . . . . . . 13 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐶𝑝) − (𝐴𝑝)) ∈ ℝ)
122 simp3 1129 . . . . . . . . . . . . . . . . 17 (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (𝐶𝑝) ∈ ℝ)
123122recnd 10405 . . . . . . . . . . . . . . . 16 (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (𝐶𝑝) ∈ ℂ)
124753ad2ant1 1124 . . . . . . . . . . . . . . . 16 (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (𝐴𝑝) ∈ ℂ)
125123, 124subeq0ad 10744 . . . . . . . . . . . . . . 15 (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (((𝐶𝑝) − (𝐴𝑝)) = 0 ↔ (𝐶𝑝) = (𝐴𝑝)))
126125necon3bid 3013 . . . . . . . . . . . . . 14 (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (((𝐶𝑝) − (𝐴𝑝)) ≠ 0 ↔ (𝐶𝑝) ≠ (𝐴𝑝)))
127126biimpar 471 . . . . . . . . . . . . 13 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐶𝑝) − (𝐴𝑝)) ≠ 0)
128119, 121, 127redivcld 11203 . . . . . . . . . . . 12 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) ∈ ℝ)
129 colinearalglem4 26258 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)(((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
130 oveq1 6929 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((𝐵𝑖) − (𝐴𝑖)) = ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)))
131130oveq1d 6937 . . . . . . . . . . . . . . . . 17 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) = (((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))))
132131breq1d 4896 . . . . . . . . . . . . . . . 16 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
133132ralimi 3134 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ∀𝑖 ∈ (1...𝑁)((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
134 ralbi 3254 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (1...𝑁)((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
135133, 134syl 17 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
136 oveq2 6930 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((𝐶𝑖) − (𝐵𝑖)) = ((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))))
137 oveq2 6930 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((𝐴𝑖) − (𝐵𝑖)) = ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))))
138136, 137oveq12d 6940 . . . . . . . . . . . . . . . . 17 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) = (((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))))
139138breq1d 4896 . . . . . . . . . . . . . . . 16 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ↔ (((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0))
140139ralimi 3134 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ∀𝑖 ∈ (1...𝑁)((((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ↔ (((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0))
141 ralbi 3254 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (1...𝑁)((((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ↔ (((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0) → (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0))
142140, 141syl 17 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0))
143 oveq1 6929 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((𝐵𝑖) − (𝐶𝑖)) = ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖)))
144143oveq2d 6938 . . . . . . . . . . . . . . . . 17 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) = (((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))))
145144breq1d 4896 . . . . . . . . . . . . . . . 16 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ↔ (((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
146145ralimi 3134 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ∀𝑖 ∈ (1...𝑁)((((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ↔ (((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
147 ralbi 3254 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (1...𝑁)((((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ↔ (((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0) → (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
148146, 147syl 17 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
149135, 142, 1483orbi123d 1508 . . . . . . . . . . . . 13 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ↔ (∀𝑖 ∈ (1...𝑁)(((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0)))
150129, 149syl5ibrcom 239 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
151116, 128, 150syl2an 589 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
152115, 151sylbird 252 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
15368, 152syldan 585 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
15459, 153syld 47 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑗 ∈ (1...𝑁)∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
15548, 154syl5bi 234 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
156155rexlimdvaa 3214 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∃𝑝 ∈ (1...𝑁)(𝐶𝑝) ≠ (𝐴𝑝) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0))))
15747, 156sylbid 232 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶𝐴 → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0))))
15837, 157pm2.61dne 3056 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
159158pm4.71rd 558 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
160 andir 994 . . . . 5 (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
161160orbi1i 900 . . . 4 ((((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))) ↔ (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
162 df-3or 1072 . . . . . 6 ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ↔ ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0))
163162anbi1i 617 . . . . 5 (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
164 andir 994 . . . . 5 ((((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
165163, 164bitri 267 . . . 4 (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
166 df-3or 1072 . . . 4 (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))) ↔ (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
167161, 165, 1663bitr4i 295 . . 3 (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
168159, 167syl6rbb 280 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
16913, 168bitrd 271 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836  w3o 1070  w3a 1071   = wceq 1601  wcel 2107  wne 2969  wral 3090  wrex 3091  cop 4404   class class class wbr 4886  cfv 6135  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277  cle 10412  cmin 10606   / cdiv 11032  ...cfz 12643  𝔼cee 26237   Btwn cbtwn 26238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-n0 11643  df-z 11729  df-uz 11993  df-icc 12494  df-fz 12644  df-seq 13120  df-exp 13179  df-ee 26240  df-btwn 26241
This theorem is referenced by:  axlowdimlem6  26296
  Copyright terms: Public domain W3C validator