Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  colinearalg Structured version   Visualization version   GIF version

Theorem colinearalg 26796
 Description: An algebraic characterization of colinearity. Note the similarity to brbtwn2 26791. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
colinearalg ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖,𝑗

Proof of Theorem colinearalg
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 brbtwn2 26791 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
2 brbtwn2 26791 . . . . 5 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖))))))
323comr 1123 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖))))))
4 colinearalglem3 26794 . . . . . 6 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
543comr 1123 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
65anbi2d 632 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
73, 6bitrd 282 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
8 brbtwn2 26791 . . . . 5 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑗) − (𝐶𝑗))) = (((𝐴𝑗) − (𝐶𝑗)) · ((𝐵𝑖) − (𝐶𝑖))))))
9 colinearalglem2 26793 . . . . . 6 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑗) − (𝐶𝑗))) = (((𝐴𝑗) − (𝐶𝑗)) · ((𝐵𝑖) − (𝐶𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
109anbi2d 632 . . . . 5 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑗) − (𝐶𝑗))) = (((𝐴𝑗) − (𝐶𝑗)) · ((𝐵𝑖) − (𝐶𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
118, 10bitrd 282 . . . 4 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
12113coml 1125 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ ↔ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
131, 7, 123orbi123d 1433 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) ↔ ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))))
14 fveecn 26788 . . . . . . . . . . . . 13 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
15 fveecn 26788 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
16 subid 10936 . . . . . . . . . . . . . . . 16 ((𝐶𝑖) ∈ ℂ → ((𝐶𝑖) − (𝐶𝑖)) = 0)
1716oveq2d 7167 . . . . . . . . . . . . . . 15 ((𝐶𝑖) ∈ ℂ → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) = (((𝐵𝑖) − (𝐶𝑖)) · 0))
1817adantl 486 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) = (((𝐵𝑖) − (𝐶𝑖)) · 0))
19 subcl 10916 . . . . . . . . . . . . . . 15 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → ((𝐵𝑖) − (𝐶𝑖)) ∈ ℂ)
2019mul01d 10870 . . . . . . . . . . . . . 14 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → (((𝐵𝑖) − (𝐶𝑖)) · 0) = 0)
2118, 20eqtrd 2794 . . . . . . . . . . . . 13 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) = 0)
2214, 15, 21syl2an 599 . . . . . . . . . . . 12 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁))) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) = 0)
2322anandirs 679 . . . . . . . . . . 11 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) = 0)
24 0le0 11768 . . . . . . . . . . 11 0 ≤ 0
2523, 24eqbrtrdi 5072 . . . . . . . . . 10 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) ≤ 0)
2625ralrimiva 3114 . . . . . . . . 9 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) ≤ 0)
27263adant1 1128 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) ≤ 0)
28 fveq1 6658 . . . . . . . . . . . 12 (𝐶 = 𝐴 → (𝐶𝑖) = (𝐴𝑖))
2928oveq2d 7167 . . . . . . . . . . 11 (𝐶 = 𝐴 → ((𝐵𝑖) − (𝐶𝑖)) = ((𝐵𝑖) − (𝐴𝑖)))
3028oveq2d 7167 . . . . . . . . . . 11 (𝐶 = 𝐴 → ((𝐶𝑖) − (𝐶𝑖)) = ((𝐶𝑖) − (𝐴𝑖)))
3129, 30oveq12d 7169 . . . . . . . . . 10 (𝐶 = 𝐴 → (((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) = (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))))
3231breq1d 5043 . . . . . . . . 9 (𝐶 = 𝐴 → ((((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) ≤ 0 ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
3332ralbidv 3127 . . . . . . . 8 (𝐶 = 𝐴 → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐶𝑖)) · ((𝐶𝑖) − (𝐶𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
3427, 33syl5ibcom 248 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶 = 𝐴 → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
35 3mix1 1328 . . . . . . 7 (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0))
3634, 35syl6 35 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶 = 𝐴 → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
3736a1dd 50 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶 = 𝐴 → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0))))
38 simp3 1136 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
39 simp1 1134 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
40 eqeefv 26789 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝐶 = 𝐴 ↔ ∀𝑝 ∈ (1...𝑁)(𝐶𝑝) = (𝐴𝑝)))
4138, 39, 40syl2anc 588 . . . . . . . 8 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶 = 𝐴 ↔ ∀𝑝 ∈ (1...𝑁)(𝐶𝑝) = (𝐴𝑝)))
4241necon3abid 2988 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶𝐴 ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐶𝑝) = (𝐴𝑝)))
43 df-ne 2953 . . . . . . . . 9 ((𝐶𝑝) ≠ (𝐴𝑝) ↔ ¬ (𝐶𝑝) = (𝐴𝑝))
4443rexbii 3176 . . . . . . . 8 (∃𝑝 ∈ (1...𝑁)(𝐶𝑝) ≠ (𝐴𝑝) ↔ ∃𝑝 ∈ (1...𝑁) ¬ (𝐶𝑝) = (𝐴𝑝))
45 rexnal 3166 . . . . . . . 8 (∃𝑝 ∈ (1...𝑁) ¬ (𝐶𝑝) = (𝐴𝑝) ↔ ¬ ∀𝑝 ∈ (1...𝑁)(𝐶𝑝) = (𝐴𝑝))
4644, 45bitr2i 279 . . . . . . 7 (¬ ∀𝑝 ∈ (1...𝑁)(𝐶𝑝) = (𝐴𝑝) ↔ ∃𝑝 ∈ (1...𝑁)(𝐶𝑝) ≠ (𝐴𝑝))
4742, 46bitrdi 290 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶𝐴 ↔ ∃𝑝 ∈ (1...𝑁)(𝐶𝑝) ≠ (𝐴𝑝)))
48 ralcom 3273 . . . . . . . 8 (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ∀𝑗 ∈ (1...𝑁)∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))
49 fveq2 6659 . . . . . . . . . . . . . . 15 (𝑗 = 𝑝 → (𝐶𝑗) = (𝐶𝑝))
50 fveq2 6659 . . . . . . . . . . . . . . 15 (𝑗 = 𝑝 → (𝐴𝑗) = (𝐴𝑝))
5149, 50oveq12d 7169 . . . . . . . . . . . . . 14 (𝑗 = 𝑝 → ((𝐶𝑗) − (𝐴𝑗)) = ((𝐶𝑝) − (𝐴𝑝)))
5251oveq2d 7167 . . . . . . . . . . . . 13 (𝑗 = 𝑝 → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))))
53 fveq2 6659 . . . . . . . . . . . . . . 15 (𝑗 = 𝑝 → (𝐵𝑗) = (𝐵𝑝))
5453, 50oveq12d 7169 . . . . . . . . . . . . . 14 (𝑗 = 𝑝 → ((𝐵𝑗) − (𝐴𝑗)) = ((𝐵𝑝) − (𝐴𝑝)))
5554oveq1d 7166 . . . . . . . . . . . . 13 (𝑗 = 𝑝 → (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))))
5652, 55eqeq12d 2775 . . . . . . . . . . . 12 (𝑗 = 𝑝 → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
5756ralbidv 3127 . . . . . . . . . . 11 (𝑗 = 𝑝 → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
5857rspcv 3537 . . . . . . . . . 10 (𝑝 ∈ (1...𝑁) → (∀𝑗 ∈ (1...𝑁)∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
5958ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑗 ∈ (1...𝑁)∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
60 fveere 26787 . . . . . . . . . . . . . 14 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐴𝑝) ∈ ℝ)
61603ad2antl1 1183 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑝 ∈ (1...𝑁)) → (𝐴𝑝) ∈ ℝ)
62 fveere 26787 . . . . . . . . . . . . . 14 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐵𝑝) ∈ ℝ)
63623ad2antl2 1184 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑝 ∈ (1...𝑁)) → (𝐵𝑝) ∈ ℝ)
64 fveere 26787 . . . . . . . . . . . . . 14 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (1...𝑁)) → (𝐶𝑝) ∈ ℝ)
65643ad2antl3 1185 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑝 ∈ (1...𝑁)) → (𝐶𝑝) ∈ ℝ)
6661, 63, 653jca 1126 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑝 ∈ (1...𝑁)) → ((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ))
6766anim1i 618 . . . . . . . . . . 11 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑝 ∈ (1...𝑁)) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)))
6867anasss 471 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)))
69 fveecn 26788 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
70693ad2antl1 1183 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
71143ad2antl2 1184 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
72153ad2antl3 1185 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
7370, 71, 723jca 1126 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ))
7473adantlr 715 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ))
75 recn 10658 . . . . . . . . . . . . . . . 16 ((𝐴𝑝) ∈ ℝ → (𝐴𝑝) ∈ ℂ)
76 recn 10658 . . . . . . . . . . . . . . . 16 ((𝐵𝑝) ∈ ℝ → (𝐵𝑝) ∈ ℂ)
77 recn 10658 . . . . . . . . . . . . . . . 16 ((𝐶𝑝) ∈ ℝ → (𝐶𝑝) ∈ ℂ)
7875, 76, 773anim123i 1149 . . . . . . . . . . . . . . 15 (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ))
7978adantr 485 . . . . . . . . . . . . . 14 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ))
8079ad2antlr 727 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ))
81 simplrr 778 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑝) ≠ (𝐴𝑝))
82 eqcom 2766 . . . . . . . . . . . . . 14 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) ↔ (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) = (𝐵𝑖))
83 simp12 1202 . . . . . . . . . . . . . . . 16 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐵𝑖) ∈ ℂ)
84 simp11 1201 . . . . . . . . . . . . . . . 16 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐴𝑖) ∈ ℂ)
85 simp22 1205 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐵𝑝) ∈ ℂ)
86 simp21 1204 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐴𝑝) ∈ ℂ)
8785, 86subcld 11028 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℂ)
88 simp23 1206 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐶𝑝) ∈ ℂ)
8988, 86subcld 11028 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐶𝑝) − (𝐴𝑝)) ∈ ℂ)
90 simpr3 1194 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ)) → (𝐶𝑝) ∈ ℂ)
91 simpr1 1192 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ)) → (𝐴𝑝) ∈ ℂ)
9290, 91subeq0ad 11038 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ)) → (((𝐶𝑝) − (𝐴𝑝)) = 0 ↔ (𝐶𝑝) = (𝐴𝑝)))
9392necon3bid 2996 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ)) → (((𝐶𝑝) − (𝐴𝑝)) ≠ 0 ↔ (𝐶𝑝) ≠ (𝐴𝑝)))
9493biimp3ar 1468 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐶𝑝) − (𝐴𝑝)) ≠ 0)
9587, 89, 94divcld 11447 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) ∈ ℂ)
96 simp13 1203 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐶𝑖) ∈ ℂ)
9796, 84subcld 11028 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐶𝑖) − (𝐴𝑖)) ∈ ℂ)
9895, 97mulcld 10692 . . . . . . . . . . . . . . . 16 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ)
99 subadd2 10921 . . . . . . . . . . . . . . . . 17 (((𝐵𝑖) ∈ ℂ ∧ (𝐴𝑖) ∈ ℂ ∧ ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ) → (((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) = (𝐵𝑖)))
10099bicomd 226 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) ∈ ℂ ∧ (𝐴𝑖) ∈ ℂ ∧ ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ) → ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) = (𝐵𝑖) ↔ ((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖)))))
10183, 84, 98, 100syl3anc 1369 . . . . . . . . . . . . . . 15 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) = (𝐵𝑖) ↔ ((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖)))))
10287, 97, 89, 94div23d 11484 . . . . . . . . . . . . . . . 16 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) = ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))))
103102eqeq2d 2770 . . . . . . . . . . . . . . 15 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) ↔ ((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖)))))
104 eqcom 2766 . . . . . . . . . . . . . . . 16 (((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) ↔ ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) = ((𝐵𝑖) − (𝐴𝑖)))
10587, 97mulcld 10692 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ)
10683, 84subcld 11028 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐵𝑖) − (𝐴𝑖)) ∈ ℂ)
107105, 89, 106, 94divmuld 11469 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) = ((𝐵𝑖) − (𝐴𝑖)) ↔ (((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑖) − (𝐴𝑖))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
10889, 106mulcomd 10693 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑖) − (𝐴𝑖))) = (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))))
109108eqeq1d 2761 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((((𝐶𝑝) − (𝐴𝑝)) · ((𝐵𝑖) − (𝐴𝑖))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
110107, 109bitrd 282 . . . . . . . . . . . . . . . 16 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) = ((𝐵𝑖) − (𝐴𝑖)) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
111104, 110syl5bb 286 . . . . . . . . . . . . . . 15 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐵𝑖) − (𝐴𝑖)) = ((((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) / ((𝐶𝑝) − (𝐴𝑝))) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
112101, 103, 1113bitr2d 311 . . . . . . . . . . . . . 14 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) = (𝐵𝑖) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
11382, 112syl5bb 286 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑝) ∈ ℂ ∧ (𝐵𝑝) ∈ ℂ ∧ (𝐶𝑝) ∈ ℂ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
11474, 80, 81, 113syl3anc 1369 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) ↔ (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
115114ralbidva 3126 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) ↔ ∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖)))))
116 3simpb 1147 . . . . . . . . . . . 12 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
117 simpl2 1190 . . . . . . . . . . . . . 14 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐵𝑝) ∈ ℝ)
118 simpl1 1189 . . . . . . . . . . . . . 14 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐴𝑝) ∈ ℝ)
119117, 118resubcld 11099 . . . . . . . . . . . . 13 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐵𝑝) − (𝐴𝑝)) ∈ ℝ)
120 simpl3 1191 . . . . . . . . . . . . . 14 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (𝐶𝑝) ∈ ℝ)
121120, 118resubcld 11099 . . . . . . . . . . . . 13 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐶𝑝) − (𝐴𝑝)) ∈ ℝ)
122 simp3 1136 . . . . . . . . . . . . . . . . 17 (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (𝐶𝑝) ∈ ℝ)
123122recnd 10700 . . . . . . . . . . . . . . . 16 (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (𝐶𝑝) ∈ ℂ)
124753ad2ant1 1131 . . . . . . . . . . . . . . . 16 (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (𝐴𝑝) ∈ ℂ)
125123, 124subeq0ad 11038 . . . . . . . . . . . . . . 15 (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (((𝐶𝑝) − (𝐴𝑝)) = 0 ↔ (𝐶𝑝) = (𝐴𝑝)))
126125necon3bid 2996 . . . . . . . . . . . . . 14 (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) → (((𝐶𝑝) − (𝐴𝑝)) ≠ 0 ↔ (𝐶𝑝) ≠ (𝐴𝑝)))
127126biimpar 482 . . . . . . . . . . . . 13 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → ((𝐶𝑝) − (𝐴𝑝)) ≠ 0)
128119, 121, 127redivcld 11499 . . . . . . . . . . . 12 ((((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝)) → (((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) ∈ ℝ)
129 colinearalglem4 26795 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)(((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
130 oveq1 7158 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((𝐵𝑖) − (𝐴𝑖)) = ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)))
131130oveq1d 7166 . . . . . . . . . . . . . . . . 17 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) = (((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))))
132131breq1d 5043 . . . . . . . . . . . . . . . 16 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
133132ralimi 3093 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ∀𝑖 ∈ (1...𝑁)((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
134 ralbi 3100 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (1...𝑁)((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ (((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
135133, 134syl 17 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
136 oveq2 7159 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((𝐶𝑖) − (𝐵𝑖)) = ((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))))
137 oveq2 7159 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((𝐴𝑖) − (𝐵𝑖)) = ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))))
138136, 137oveq12d 7169 . . . . . . . . . . . . . . . . 17 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) = (((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))))
139138breq1d 5043 . . . . . . . . . . . . . . . 16 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ↔ (((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0))
140139ralimi 3093 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ∀𝑖 ∈ (1...𝑁)((((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ↔ (((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0))
141 ralbi 3100 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (1...𝑁)((((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ↔ (((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0) → (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0))
142140, 141syl 17 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0))
143 oveq1 7158 . . . . . . . . . . . . . . . . . 18 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((𝐵𝑖) − (𝐶𝑖)) = ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖)))
144143oveq2d 7167 . . . . . . . . . . . . . . . . 17 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) = (((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))))
145144breq1d 5043 . . . . . . . . . . . . . . . 16 ((𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ↔ (((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
146145ralimi 3093 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ∀𝑖 ∈ (1...𝑁)((((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ↔ (((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
147 ralbi 3100 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (1...𝑁)((((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ↔ (((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0) → (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
148146, 147syl 17 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ↔ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
149135, 142, 1483orbi123d 1433 . . . . . . . . . . . . 13 (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ↔ (∀𝑖 ∈ (1...𝑁)(((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0)))
150129, 149syl5ibrcom 250 . . . . . . . . . . . 12 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
151116, 128, 150syl2an 599 . . . . . . . . . . 11 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((((𝐵𝑝) − (𝐴𝑝)) / ((𝐶𝑝) − (𝐴𝑝))) · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
152115, 151sylbird 263 . . . . . . . . . 10 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑝) ∈ ℝ ∧ (𝐵𝑝) ∈ ℝ ∧ (𝐶𝑝) ∈ ℝ) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
15368, 152syldan 595 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑝) − (𝐴𝑝))) = (((𝐵𝑝) − (𝐴𝑝)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
15459, 153syld 47 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑗 ∈ (1...𝑁)∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
15548, 154syl5bi 245 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑝 ∈ (1...𝑁) ∧ (𝐶𝑝) ≠ (𝐴𝑝))) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
156155rexlimdvaa 3210 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∃𝑝 ∈ (1...𝑁)(𝐶𝑝) ≠ (𝐴𝑝) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0))))
15747, 156sylbid 243 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐶𝐴 → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0))))
15837, 157pm2.61dne 3038 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) → (∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0)))
159158pm4.71rd 567 . . 3 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
160 andir 1007 . . . . 5 (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
161160orbi1i 912 . . . 4 ((((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))) ↔ (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
162 df-3or 1086 . . . . . 6 ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ↔ ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0))
163162anbi1i 627 . . . . 5 (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
164 andir 1007 . . . . 5 ((((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
165163, 164bitri 278 . . . 4 (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
166 df-3or 1086 . . . 4 (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))) ↔ (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
167161, 165, 1663bitr4i 307 . . 3 (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0) ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ ((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))))
168159, 167bitr2di 292 . 2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (((∀𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑖) − (𝐵𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))) ∨ (∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · ((𝐵𝑖) − (𝐶𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
16913, 168bitrd 282 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 400   ∨ wo 845   ∨ w3o 1084   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112   ≠ wne 2952  ∀wral 3071  ∃wrex 3072  ⟨cop 4529   class class class wbr 5033  ‘cfv 6336  (class class class)co 7151  ℂcc 10566  ℝcr 10567  0cc0 10568  1c1 10569   + caddc 10571   · cmul 10573   ≤ cle 10707   − cmin 10901   / cdiv 11328  ...cfz 12932  𝔼cee 26774   Btwn cbtwn 26775 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-er 8300  df-map 8419  df-en 8529  df-dom 8530  df-sdom 8531  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-div 11329  df-nn 11668  df-2 11730  df-n0 11928  df-z 12014  df-uz 12276  df-icc 12779  df-fz 12933  df-seq 13412  df-exp 13473  df-ee 26777  df-btwn 26778 This theorem is referenced by:  axlowdimlem6  26833
 Copyright terms: Public domain W3C validator