![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0le2is012 | Structured version Visualization version GIF version |
Description: A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.) |
Ref | Expression |
---|---|
nn0le2is012 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 12486 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
2 | 2re 12291 | . . . . 5 ⊢ 2 ∈ ℝ | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
4 | 1, 3 | leloed 11362 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 2 ↔ (𝑁 < 2 ∨ 𝑁 = 2))) |
5 | nn0z 12588 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
6 | 2z 12599 | . . . . . . . . 9 ⊢ 2 ∈ ℤ | |
7 | zltlem1 12620 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) | |
8 | 5, 6, 7 | sylancl 585 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) |
9 | 2m1e1 12343 | . . . . . . . . . 10 ⊢ (2 − 1) = 1 | |
10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (2 − 1) = 1) |
11 | 10 | breq2d 5160 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1)) |
12 | 8, 11 | bitrd 279 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1)) |
13 | 1red 11220 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
14 | 1, 13 | leloed 11362 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 ↔ (𝑁 < 1 ∨ 𝑁 = 1))) |
15 | nn0lt10b 12629 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) | |
16 | 3mix1 1329 | . . . . . . . . . . . 12 ⊢ (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | |
17 | 15, 16 | syl6bi 253 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
18 | 17 | com12 32 | . . . . . . . . . 10 ⊢ (𝑁 < 1 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
19 | 3mix2 1330 | . . . . . . . . . . 11 ⊢ (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | |
20 | 19 | a1d 25 | . . . . . . . . . 10 ⊢ (𝑁 = 1 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
21 | 18, 20 | jaoi 854 | . . . . . . . . 9 ⊢ ((𝑁 < 1 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
22 | 21 | com12 32 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 < 1 ∨ 𝑁 = 1) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
23 | 14, 22 | sylbid 239 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
24 | 12, 23 | sylbid 239 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
25 | 24 | com12 32 | . . . . 5 ⊢ (𝑁 < 2 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
26 | 3mix3 1331 | . . . . . 6 ⊢ (𝑁 = 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | |
27 | 26 | a1d 25 | . . . . 5 ⊢ (𝑁 = 2 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
28 | 25, 27 | jaoi 854 | . . . 4 ⊢ ((𝑁 < 2 ∨ 𝑁 = 2) → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
29 | 28 | com12 32 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 < 2 ∨ 𝑁 = 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
30 | 4, 29 | sylbid 239 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
31 | 30 | imp 406 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 ∨ w3o 1085 = wceq 1540 ∈ wcel 2105 class class class wbr 5148 (class class class)co 7412 ℝcr 11113 0cc0 11114 1c1 11115 < clt 11253 ≤ cle 11254 − cmin 11449 2c2 12272 ℕ0cn0 12477 ℤcz 12563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-z 12564 |
This theorem is referenced by: xnn0le2is012 13230 2sq2 27173 exple2lt6 47129 |
Copyright terms: Public domain | W3C validator |