![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0le2is012 | Structured version Visualization version GIF version |
Description: A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.) |
Ref | Expression |
---|---|
nn0le2is012 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 11720 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
2 | 2re 11517 | . . . . 5 ⊢ 2 ∈ ℝ | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
4 | 1, 3 | leloed 10585 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 2 ↔ (𝑁 < 2 ∨ 𝑁 = 2))) |
5 | nn0z 11821 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
6 | 2z 11830 | . . . . . . . . 9 ⊢ 2 ∈ ℤ | |
7 | zltlem1 11851 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) | |
8 | 5, 6, 7 | sylancl 577 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) |
9 | 2m1e1 11576 | . . . . . . . . . 10 ⊢ (2 − 1) = 1 | |
10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (2 − 1) = 1) |
11 | 10 | breq2d 4942 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1)) |
12 | 8, 11 | bitrd 271 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1)) |
13 | 1red 10442 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
14 | 1, 13 | leloed 10585 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 ↔ (𝑁 < 1 ∨ 𝑁 = 1))) |
15 | nn0lt10b 11860 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) | |
16 | 3mix1 1310 | . . . . . . . . . . . 12 ⊢ (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | |
17 | 15, 16 | syl6bi 245 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
18 | 17 | com12 32 | . . . . . . . . . 10 ⊢ (𝑁 < 1 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
19 | 3mix2 1311 | . . . . . . . . . . 11 ⊢ (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | |
20 | 19 | a1d 25 | . . . . . . . . . 10 ⊢ (𝑁 = 1 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
21 | 18, 20 | jaoi 843 | . . . . . . . . 9 ⊢ ((𝑁 < 1 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
22 | 21 | com12 32 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 < 1 ∨ 𝑁 = 1) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
23 | 14, 22 | sylbid 232 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
24 | 12, 23 | sylbid 232 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
25 | 24 | com12 32 | . . . . 5 ⊢ (𝑁 < 2 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
26 | 3mix3 1312 | . . . . . 6 ⊢ (𝑁 = 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | |
27 | 26 | a1d 25 | . . . . 5 ⊢ (𝑁 = 2 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
28 | 25, 27 | jaoi 843 | . . . 4 ⊢ ((𝑁 < 2 ∨ 𝑁 = 2) → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
29 | 28 | com12 32 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 < 2 ∨ 𝑁 = 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
30 | 4, 29 | sylbid 232 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
31 | 30 | imp 398 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∨ wo 833 ∨ w3o 1067 = wceq 1507 ∈ wcel 2050 class class class wbr 4930 (class class class)co 6978 ℝcr 10336 0cc0 10337 1c1 10338 < clt 10476 ≤ cle 10477 − cmin 10672 2c2 11498 ℕ0cn0 11710 ℤcz 11796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 ax-pre-mulgt0 10414 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-om 7399 df-wrecs 7752 df-recs 7814 df-rdg 7852 df-er 8091 df-en 8309 df-dom 8310 df-sdom 8311 df-pnf 10478 df-mnf 10479 df-xr 10480 df-ltxr 10481 df-le 10482 df-sub 10674 df-neg 10675 df-nn 11442 df-2 11506 df-n0 11711 df-z 11797 |
This theorem is referenced by: xnn0le2is012 12458 2sq2 25714 exple2lt6 43779 |
Copyright terms: Public domain | W3C validator |