MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0le2is012 Structured version   Visualization version   GIF version

Theorem nn0le2is012 11862
Description: A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.)
Assertion
Ref Expression
nn0le2is012 ((𝑁 ∈ ℕ0𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))

Proof of Theorem nn0le2is012
StepHypRef Expression
1 nn0re 11720 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2 2re 11517 . . . . 5 2 ∈ ℝ
32a1i 11 . . . 4 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
41, 3leloed 10585 . . 3 (𝑁 ∈ ℕ0 → (𝑁 ≤ 2 ↔ (𝑁 < 2 ∨ 𝑁 = 2)))
5 nn0z 11821 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
6 2z 11830 . . . . . . . . 9 2 ∈ ℤ
7 zltlem1 11851 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
85, 6, 7sylancl 577 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
9 2m1e1 11576 . . . . . . . . . 10 (2 − 1) = 1
109a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (2 − 1) = 1)
1110breq2d 4942 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1))
128, 11bitrd 271 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1))
13 1red 10442 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
141, 13leloed 10585 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 ↔ (𝑁 < 1 ∨ 𝑁 = 1)))
15 nn0lt10b 11860 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0))
16 3mix1 1310 . . . . . . . . . . . 12 (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
1715, 16syl6bi 245 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
1817com12 32 . . . . . . . . . 10 (𝑁 < 1 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
19 3mix2 1311 . . . . . . . . . . 11 (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
2019a1d 25 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2118, 20jaoi 843 . . . . . . . . 9 ((𝑁 < 1 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2221com12 32 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 < 1 ∨ 𝑁 = 1) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2314, 22sylbid 232 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2412, 23sylbid 232 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2524com12 32 . . . . 5 (𝑁 < 2 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
26 3mix3 1312 . . . . . 6 (𝑁 = 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
2726a1d 25 . . . . 5 (𝑁 = 2 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2825, 27jaoi 843 . . . 4 ((𝑁 < 2 ∨ 𝑁 = 2) → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
2928com12 32 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 < 2 ∨ 𝑁 = 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
304, 29sylbid 232 . 2 (𝑁 ∈ ℕ0 → (𝑁 ≤ 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)))
3130imp 398 1 ((𝑁 ∈ ℕ0𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 833  w3o 1067   = wceq 1507  wcel 2050   class class class wbr 4930  (class class class)co 6978  cr 10336  0cc0 10337  1c1 10338   < clt 10476  cle 10477  cmin 10672  2c2 11498  0cn0 11710  cz 11796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-2 11506  df-n0 11711  df-z 11797
This theorem is referenced by:  xnn0le2is012  12458  2sq2  25714  exple2lt6  43779
  Copyright terms: Public domain W3C validator