| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0le2is012 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.) |
| Ref | Expression |
|---|---|
| nn0le2is012 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 12390 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 2 | 2re 12199 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
| 4 | 1, 3 | leloed 11256 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 2 ↔ (𝑁 < 2 ∨ 𝑁 = 2))) |
| 5 | nn0z 12493 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 6 | 2z 12504 | . . . . . . . . 9 ⊢ 2 ∈ ℤ | |
| 7 | zltlem1 12525 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) | |
| 8 | 5, 6, 7 | sylancl 586 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) |
| 9 | 2m1e1 12246 | . . . . . . . . . 10 ⊢ (2 − 1) = 1 | |
| 10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (2 − 1) = 1) |
| 11 | 10 | breq2d 5101 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1)) |
| 12 | 8, 11 | bitrd 279 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1)) |
| 13 | 1red 11113 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
| 14 | 1, 13 | leloed 11256 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 ↔ (𝑁 < 1 ∨ 𝑁 = 1))) |
| 15 | nn0lt10b 12535 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) | |
| 16 | 3mix1 1331 | . . . . . . . . . . . 12 ⊢ (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | |
| 17 | 15, 16 | biimtrdi 253 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 18 | 17 | com12 32 | . . . . . . . . . 10 ⊢ (𝑁 < 1 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 19 | 3mix2 1332 | . . . . . . . . . . 11 ⊢ (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | |
| 20 | 19 | a1d 25 | . . . . . . . . . 10 ⊢ (𝑁 = 1 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 21 | 18, 20 | jaoi 857 | . . . . . . . . 9 ⊢ ((𝑁 < 1 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 22 | 21 | com12 32 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 < 1 ∨ 𝑁 = 1) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 23 | 14, 22 | sylbid 240 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 24 | 12, 23 | sylbid 240 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 25 | 24 | com12 32 | . . . . 5 ⊢ (𝑁 < 2 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 26 | 3mix3 1333 | . . . . . 6 ⊢ (𝑁 = 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | |
| 27 | 26 | a1d 25 | . . . . 5 ⊢ (𝑁 = 2 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 28 | 25, 27 | jaoi 857 | . . . 4 ⊢ ((𝑁 < 2 ∨ 𝑁 = 2) → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 29 | 28 | com12 32 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 < 2 ∨ 𝑁 = 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 30 | 4, 29 | sylbid 240 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 31 | 30 | imp 406 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 < clt 11146 ≤ cle 11147 − cmin 11344 2c2 12180 ℕ0cn0 12381 ℤcz 12468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 |
| This theorem is referenced by: xnn0le2is012 13145 2sq2 27371 exple2lt6 48403 |
| Copyright terms: Public domain | W3C validator |