| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0le2is012 | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.) |
| Ref | Expression |
|---|---|
| nn0le2is012 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 12467 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 2 | 2re 12271 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
| 4 | 1, 3 | leloed 11335 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 2 ↔ (𝑁 < 2 ∨ 𝑁 = 2))) |
| 5 | nn0z 12570 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 6 | 2z 12581 | . . . . . . . . 9 ⊢ 2 ∈ ℤ | |
| 7 | zltlem1 12602 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) | |
| 8 | 5, 6, 7 | sylancl 586 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) |
| 9 | 2m1e1 12323 | . . . . . . . . . 10 ⊢ (2 − 1) = 1 | |
| 10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (2 − 1) = 1) |
| 11 | 10 | breq2d 5127 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1)) |
| 12 | 8, 11 | bitrd 279 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1)) |
| 13 | 1red 11193 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
| 14 | 1, 13 | leloed 11335 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 ↔ (𝑁 < 1 ∨ 𝑁 = 1))) |
| 15 | nn0lt10b 12612 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) | |
| 16 | 3mix1 1331 | . . . . . . . . . . . 12 ⊢ (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | |
| 17 | 15, 16 | biimtrdi 253 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 18 | 17 | com12 32 | . . . . . . . . . 10 ⊢ (𝑁 < 1 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 19 | 3mix2 1332 | . . . . . . . . . . 11 ⊢ (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | |
| 20 | 19 | a1d 25 | . . . . . . . . . 10 ⊢ (𝑁 = 1 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 21 | 18, 20 | jaoi 857 | . . . . . . . . 9 ⊢ ((𝑁 < 1 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 22 | 21 | com12 32 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 < 1 ∨ 𝑁 = 1) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 23 | 14, 22 | sylbid 240 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 24 | 12, 23 | sylbid 240 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 25 | 24 | com12 32 | . . . . 5 ⊢ (𝑁 < 2 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 26 | 3mix3 1333 | . . . . . 6 ⊢ (𝑁 = 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | |
| 27 | 26 | a1d 25 | . . . . 5 ⊢ (𝑁 = 2 → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 28 | 25, 27 | jaoi 857 | . . . 4 ⊢ ((𝑁 < 2 ∨ 𝑁 = 2) → (𝑁 ∈ ℕ0 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 29 | 28 | com12 32 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 < 2 ∨ 𝑁 = 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 30 | 4, 29 | sylbid 240 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 2 → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2))) |
| 31 | 30 | imp 406 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 class class class wbr 5115 (class class class)co 7394 ℝcr 11085 0cc0 11086 1c1 11087 < clt 11226 ≤ cle 11227 − cmin 11423 2c2 12252 ℕ0cn0 12458 ℤcz 12545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-n0 12459 df-z 12546 |
| This theorem is referenced by: xnn0le2is012 13219 2sq2 27351 exple2lt6 48281 |
| Copyright terms: Public domain | W3C validator |