![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnz | Structured version Visualization version GIF version |
Description: A positive integer is an integer. (Contributed by NM, 9-May-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 29-Nov-2022.) |
Ref | Expression |
---|---|
nnz | ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 12167 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
2 | 3mix2 1332 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) | |
3 | elz 12508 | . 2 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
4 | 1, 2, 3 | sylanbrc 584 | 1 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) |
Copyright terms: Public domain | W3C validator |