HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslmd2i Structured version   Visualization version   GIF version

Theorem mdslmd2i 31548
Description: Preservation of the modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2 (join version). (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
Assertion
Ref Expression
mdslmd2i (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵)) → (𝐶 𝑀 𝐷 ↔ (𝐶 𝐴) 𝑀 (𝐷 𝐴)))

Proof of Theorem mdslmd2i
StepHypRef Expression
1 mdslmd.3 . . . . . . . 8 𝐶C
2 mdslmd.4 . . . . . . . 8 𝐷C
31, 2chjcli 30675 . . . . . . 7 (𝐶 𝐷) ∈ C
4 mdslmd.2 . . . . . . 7 𝐵C
5 mdslmd.1 . . . . . . 7 𝐴C
63, 4, 5chlej1i 30691 . . . . . 6 ((𝐶 𝐷) ⊆ 𝐵 → ((𝐶 𝐷) ∨ 𝐴) ⊆ (𝐵 𝐴))
71, 2, 5chjjdiri 30742 . . . . . 6 ((𝐶 𝐷) ∨ 𝐴) = ((𝐶 𝐴) ∨ (𝐷 𝐴))
84, 5chjcomi 30686 . . . . . 6 (𝐵 𝐴) = (𝐴 𝐵)
96, 7, 83sstr3g 4024 . . . . 5 ((𝐶 𝐷) ⊆ 𝐵 → ((𝐶 𝐴) ∨ (𝐷 𝐴)) ⊆ (𝐴 𝐵))
109adantl 483 . . . 4 (((𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵) → ((𝐶 𝐴) ∨ (𝐷 𝐴)) ⊆ (𝐴 𝐵))
115, 1chub2i 30688 . . . . 5 𝐴 ⊆ (𝐶 𝐴)
125, 2chub2i 30688 . . . . 5 𝐴 ⊆ (𝐷 𝐴)
1311, 12ssini 4229 . . . 4 𝐴 ⊆ ((𝐶 𝐴) ∩ (𝐷 𝐴))
1410, 13jctil 521 . . 3 (((𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵) → (𝐴 ⊆ ((𝐶 𝐴) ∩ (𝐷 𝐴)) ∧ ((𝐶 𝐴) ∨ (𝐷 𝐴)) ⊆ (𝐴 𝐵)))
151, 5chjcli 30675 . . . 4 (𝐶 𝐴) ∈ C
162, 5chjcli 30675 . . . 4 (𝐷 𝐴) ∈ C
175, 4, 15, 16mdslmd1i 31547 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ ((𝐶 𝐴) ∩ (𝐷 𝐴)) ∧ ((𝐶 𝐴) ∨ (𝐷 𝐴)) ⊆ (𝐴 𝐵))) → ((𝐶 𝐴) 𝑀 (𝐷 𝐴) ↔ ((𝐶 𝐴) ∩ 𝐵) 𝑀 ((𝐷 𝐴) ∩ 𝐵)))
1814, 17sylan2 594 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵)) → ((𝐶 𝐴) 𝑀 (𝐷 𝐴) ↔ ((𝐶 𝐴) ∩ 𝐵) 𝑀 ((𝐷 𝐴) ∩ 𝐵)))
19 id 22 . . . . . 6 (𝐴 𝑀 𝐵𝐴 𝑀 𝐵)
20 inss1 4226 . . . . . . 7 (𝐶𝐷) ⊆ 𝐶
21 sstr 3988 . . . . . . 7 (((𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶𝐷) ⊆ 𝐶) → (𝐴𝐵) ⊆ 𝐶)
2220, 21mpan2 690 . . . . . 6 ((𝐴𝐵) ⊆ (𝐶𝐷) → (𝐴𝐵) ⊆ 𝐶)
231, 2chub1i 30687 . . . . . . 7 𝐶 ⊆ (𝐶 𝐷)
24 sstr 3988 . . . . . . 7 ((𝐶 ⊆ (𝐶 𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵) → 𝐶𝐵)
2523, 24mpan 689 . . . . . 6 ((𝐶 𝐷) ⊆ 𝐵𝐶𝐵)
265, 4, 13pm3.2i 1340 . . . . . . 7 (𝐴C𝐵C𝐶C )
27 mdsl3 31534 . . . . . . 7 (((𝐴C𝐵C𝐶C ) ∧ (𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝐶𝐶𝐵)) → ((𝐶 𝐴) ∩ 𝐵) = 𝐶)
2826, 27mpan 689 . . . . . 6 ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝐶𝐶𝐵) → ((𝐶 𝐴) ∩ 𝐵) = 𝐶)
2919, 22, 25, 28syl3an 1161 . . . . 5 ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵) → ((𝐶 𝐴) ∩ 𝐵) = 𝐶)
30 inss2 4227 . . . . . . 7 (𝐶𝐷) ⊆ 𝐷
31 sstr 3988 . . . . . . 7 (((𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶𝐷) ⊆ 𝐷) → (𝐴𝐵) ⊆ 𝐷)
3230, 31mpan2 690 . . . . . 6 ((𝐴𝐵) ⊆ (𝐶𝐷) → (𝐴𝐵) ⊆ 𝐷)
332, 1chub2i 30688 . . . . . . 7 𝐷 ⊆ (𝐶 𝐷)
34 sstr 3988 . . . . . . 7 ((𝐷 ⊆ (𝐶 𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵) → 𝐷𝐵)
3533, 34mpan 689 . . . . . 6 ((𝐶 𝐷) ⊆ 𝐵𝐷𝐵)
365, 4, 23pm3.2i 1340 . . . . . . 7 (𝐴C𝐵C𝐷C )
37 mdsl3 31534 . . . . . . 7 (((𝐴C𝐵C𝐷C ) ∧ (𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝐷𝐷𝐵)) → ((𝐷 𝐴) ∩ 𝐵) = 𝐷)
3836, 37mpan 689 . . . . . 6 ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ 𝐷𝐷𝐵) → ((𝐷 𝐴) ∩ 𝐵) = 𝐷)
3919, 32, 35, 38syl3an 1161 . . . . 5 ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵) → ((𝐷 𝐴) ∩ 𝐵) = 𝐷)
4029, 39breq12d 5157 . . . 4 ((𝐴 𝑀 𝐵 ∧ (𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵) → (((𝐶 𝐴) ∩ 𝐵) 𝑀 ((𝐷 𝐴) ∩ 𝐵) ↔ 𝐶 𝑀 𝐷))
41403expb 1121 . . 3 ((𝐴 𝑀 𝐵 ∧ ((𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵)) → (((𝐶 𝐴) ∩ 𝐵) 𝑀 ((𝐷 𝐴) ∩ 𝐵) ↔ 𝐶 𝑀 𝐷))
4241adantlr 714 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵)) → (((𝐶 𝐴) ∩ 𝐵) 𝑀 ((𝐷 𝐴) ∩ 𝐵) ↔ 𝐶 𝑀 𝐷))
4318, 42bitr2d 280 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐵) ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ 𝐵)) → (𝐶 𝑀 𝐷 ↔ (𝐶 𝐴) 𝑀 (𝐷 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  cin 3945  wss 3946   class class class wbr 5144  (class class class)co 7396   C cch 30147   chj 30151   𝑀 cmd 30184   𝑀* cdmd 30185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-inf2 9623  ax-cc 10417  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-pre-sup 11175  ax-addf 11176  ax-mulf 11177  ax-hilex 30217  ax-hfvadd 30218  ax-hvcom 30219  ax-hvass 30220  ax-hv0cl 30221  ax-hvaddid 30222  ax-hfvmul 30223  ax-hvmulid 30224  ax-hvmulass 30225  ax-hvdistr1 30226  ax-hvdistr2 30227  ax-hvmul0 30228  ax-hfi 30297  ax-his1 30300  ax-his2 30301  ax-his3 30302  ax-his4 30303  ax-hcompl 30420
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-iin 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-isom 6544  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-of 7657  df-om 7843  df-1st 7962  df-2nd 7963  df-supp 8134  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-2o 8454  df-oadd 8457  df-omul 8458  df-er 8691  df-map 8810  df-pm 8811  df-ixp 8880  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-fsupp 9350  df-fi 9393  df-sup 9424  df-inf 9425  df-oi 9492  df-card 9921  df-acn 9924  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-z 12546  df-dec 12665  df-uz 12810  df-q 12920  df-rp 12962  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13315  df-ico 13317  df-icc 13318  df-fz 13472  df-fzo 13615  df-fl 13744  df-seq 13954  df-exp 14015  df-hash 14278  df-cj 15033  df-re 15034  df-im 15035  df-sqrt 15169  df-abs 15170  df-clim 15419  df-rlim 15420  df-sum 15620  df-struct 17067  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-starv 17199  df-sca 17200  df-vsca 17201  df-ip 17202  df-tset 17203  df-ple 17204  df-ds 17206  df-unif 17207  df-hom 17208  df-cco 17209  df-rest 17355  df-topn 17356  df-0g 17374  df-gsum 17375  df-topgen 17376  df-pt 17377  df-prds 17380  df-xrs 17435  df-qtop 17440  df-imas 17441  df-xps 17443  df-mre 17517  df-mrc 17518  df-acs 17520  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-submnd 18659  df-mulg 18936  df-cntz 19166  df-cmn 19634  df-psmet 20910  df-xmet 20911  df-met 20912  df-bl 20913  df-mopn 20914  df-fbas 20915  df-fg 20916  df-cnfld 20919  df-top 22365  df-topon 22382  df-topsp 22404  df-bases 22418  df-cld 22492  df-ntr 22493  df-cls 22494  df-nei 22571  df-cn 22700  df-cnp 22701  df-lm 22702  df-haus 22788  df-tx 23035  df-hmeo 23228  df-fil 23319  df-fm 23411  df-flim 23412  df-flf 23413  df-xms 23795  df-ms 23796  df-tms 23797  df-cfil 24741  df-cau 24742  df-cmet 24743  df-grpo 29711  df-gid 29712  df-ginv 29713  df-gdiv 29714  df-ablo 29763  df-vc 29777  df-nv 29810  df-va 29813  df-ba 29814  df-sm 29815  df-0v 29816  df-vs 29817  df-nmcv 29818  df-ims 29819  df-dip 29919  df-ssp 29940  df-ph 30031  df-cbn 30081  df-hnorm 30186  df-hba 30187  df-hvsub 30189  df-hlim 30190  df-hcau 30191  df-sh 30425  df-ch 30439  df-oc 30470  df-ch0 30471  df-shs 30526  df-chj 30528  df-md 31498  df-dmd 31499
This theorem is referenced by:  mdsldmd1i  31549
  Copyright terms: Public domain W3C validator