![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > mdslmd2i | Structured version Visualization version GIF version |
Description: Preservation of the modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2 (join version). (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mdslmd.1 | ⊢ 𝐴 ∈ Cℋ |
mdslmd.2 | ⊢ 𝐵 ∈ Cℋ |
mdslmd.3 | ⊢ 𝐶 ∈ Cℋ |
mdslmd.4 | ⊢ 𝐷 ∈ Cℋ |
Ref | Expression |
---|---|
mdslmd2i | ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵)) → (𝐶 𝑀ℋ 𝐷 ↔ (𝐶 ∨ℋ 𝐴) 𝑀ℋ (𝐷 ∨ℋ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdslmd.3 | . . . . . . . 8 ⊢ 𝐶 ∈ Cℋ | |
2 | mdslmd.4 | . . . . . . . 8 ⊢ 𝐷 ∈ Cℋ | |
3 | 1, 2 | chjcli 28921 | . . . . . . 7 ⊢ (𝐶 ∨ℋ 𝐷) ∈ Cℋ |
4 | mdslmd.2 | . . . . . . 7 ⊢ 𝐵 ∈ Cℋ | |
5 | mdslmd.1 | . . . . . . 7 ⊢ 𝐴 ∈ Cℋ | |
6 | 3, 4, 5 | chlej1i 28937 | . . . . . 6 ⊢ ((𝐶 ∨ℋ 𝐷) ⊆ 𝐵 → ((𝐶 ∨ℋ 𝐷) ∨ℋ 𝐴) ⊆ (𝐵 ∨ℋ 𝐴)) |
7 | 1, 2, 5 | chjjdiri 28988 | . . . . . 6 ⊢ ((𝐶 ∨ℋ 𝐷) ∨ℋ 𝐴) = ((𝐶 ∨ℋ 𝐴) ∨ℋ (𝐷 ∨ℋ 𝐴)) |
8 | 4, 5 | chjcomi 28932 | . . . . . 6 ⊢ (𝐵 ∨ℋ 𝐴) = (𝐴 ∨ℋ 𝐵) |
9 | 6, 7, 8 | 3sstr3g 3938 | . . . . 5 ⊢ ((𝐶 ∨ℋ 𝐷) ⊆ 𝐵 → ((𝐶 ∨ℋ 𝐴) ∨ℋ (𝐷 ∨ℋ 𝐴)) ⊆ (𝐴 ∨ℋ 𝐵)) |
10 | 9 | adantl 482 | . . . 4 ⊢ (((𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵) → ((𝐶 ∨ℋ 𝐴) ∨ℋ (𝐷 ∨ℋ 𝐴)) ⊆ (𝐴 ∨ℋ 𝐵)) |
11 | 5, 1 | chub2i 28934 | . . . . 5 ⊢ 𝐴 ⊆ (𝐶 ∨ℋ 𝐴) |
12 | 5, 2 | chub2i 28934 | . . . . 5 ⊢ 𝐴 ⊆ (𝐷 ∨ℋ 𝐴) |
13 | 11, 12 | ssini 4134 | . . . 4 ⊢ 𝐴 ⊆ ((𝐶 ∨ℋ 𝐴) ∩ (𝐷 ∨ℋ 𝐴)) |
14 | 10, 13 | jctil 520 | . . 3 ⊢ (((𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵) → (𝐴 ⊆ ((𝐶 ∨ℋ 𝐴) ∩ (𝐷 ∨ℋ 𝐴)) ∧ ((𝐶 ∨ℋ 𝐴) ∨ℋ (𝐷 ∨ℋ 𝐴)) ⊆ (𝐴 ∨ℋ 𝐵))) |
15 | 1, 5 | chjcli 28921 | . . . 4 ⊢ (𝐶 ∨ℋ 𝐴) ∈ Cℋ |
16 | 2, 5 | chjcli 28921 | . . . 4 ⊢ (𝐷 ∨ℋ 𝐴) ∈ Cℋ |
17 | 5, 4, 15, 16 | mdslmd1i 29793 | . . 3 ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ (𝐴 ⊆ ((𝐶 ∨ℋ 𝐴) ∩ (𝐷 ∨ℋ 𝐴)) ∧ ((𝐶 ∨ℋ 𝐴) ∨ℋ (𝐷 ∨ℋ 𝐴)) ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∨ℋ 𝐴) 𝑀ℋ (𝐷 ∨ℋ 𝐴) ↔ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) 𝑀ℋ ((𝐷 ∨ℋ 𝐴) ∩ 𝐵))) |
18 | 14, 17 | sylan2 592 | . 2 ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵)) → ((𝐶 ∨ℋ 𝐴) 𝑀ℋ (𝐷 ∨ℋ 𝐴) ↔ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) 𝑀ℋ ((𝐷 ∨ℋ 𝐴) ∩ 𝐵))) |
19 | id 22 | . . . . . 6 ⊢ (𝐴 𝑀ℋ 𝐵 → 𝐴 𝑀ℋ 𝐵) | |
20 | inss1 4131 | . . . . . . 7 ⊢ (𝐶 ∩ 𝐷) ⊆ 𝐶 | |
21 | sstr 3903 | . . . . . . 7 ⊢ (((𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∩ 𝐷) ⊆ 𝐶) → (𝐴 ∩ 𝐵) ⊆ 𝐶) | |
22 | 20, 21 | mpan2 687 | . . . . . 6 ⊢ ((𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) → (𝐴 ∩ 𝐵) ⊆ 𝐶) |
23 | 1, 2 | chub1i 28933 | . . . . . . 7 ⊢ 𝐶 ⊆ (𝐶 ∨ℋ 𝐷) |
24 | sstr 3903 | . . . . . . 7 ⊢ ((𝐶 ⊆ (𝐶 ∨ℋ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵) → 𝐶 ⊆ 𝐵) | |
25 | 23, 24 | mpan 686 | . . . . . 6 ⊢ ((𝐶 ∨ℋ 𝐷) ⊆ 𝐵 → 𝐶 ⊆ 𝐵) |
26 | 5, 4, 1 | 3pm3.2i 1332 | . . . . . . 7 ⊢ (𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) |
27 | mdsl3 29780 | . . . . . . 7 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = 𝐶) | |
28 | 26, 27 | mpan 686 | . . . . . 6 ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = 𝐶) |
29 | 19, 22, 25, 28 | syl3an 1153 | . . . . 5 ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵) → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = 𝐶) |
30 | inss2 4132 | . . . . . . 7 ⊢ (𝐶 ∩ 𝐷) ⊆ 𝐷 | |
31 | sstr 3903 | . . . . . . 7 ⊢ (((𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∩ 𝐷) ⊆ 𝐷) → (𝐴 ∩ 𝐵) ⊆ 𝐷) | |
32 | 30, 31 | mpan2 687 | . . . . . 6 ⊢ ((𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) → (𝐴 ∩ 𝐵) ⊆ 𝐷) |
33 | 2, 1 | chub2i 28934 | . . . . . . 7 ⊢ 𝐷 ⊆ (𝐶 ∨ℋ 𝐷) |
34 | sstr 3903 | . . . . . . 7 ⊢ ((𝐷 ⊆ (𝐶 ∨ℋ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵) → 𝐷 ⊆ 𝐵) | |
35 | 33, 34 | mpan 686 | . . . . . 6 ⊢ ((𝐶 ∨ℋ 𝐷) ⊆ 𝐵 → 𝐷 ⊆ 𝐵) |
36 | 5, 4, 2 | 3pm3.2i 1332 | . . . . . . 7 ⊢ (𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) |
37 | mdsl3 29780 | . . . . . . 7 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐷 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵)) → ((𝐷 ∨ℋ 𝐴) ∩ 𝐵) = 𝐷) | |
38 | 36, 37 | mpan 686 | . . . . . 6 ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵) → ((𝐷 ∨ℋ 𝐴) ∩ 𝐵) = 𝐷) |
39 | 19, 32, 35, 38 | syl3an 1153 | . . . . 5 ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵) → ((𝐷 ∨ℋ 𝐴) ∩ 𝐵) = 𝐷) |
40 | 29, 39 | breq12d 4981 | . . . 4 ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵) → (((𝐶 ∨ℋ 𝐴) ∩ 𝐵) 𝑀ℋ ((𝐷 ∨ℋ 𝐴) ∩ 𝐵) ↔ 𝐶 𝑀ℋ 𝐷)) |
41 | 40 | 3expb 1113 | . . 3 ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ ((𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵)) → (((𝐶 ∨ℋ 𝐴) ∩ 𝐵) 𝑀ℋ ((𝐷 ∨ℋ 𝐴) ∩ 𝐵) ↔ 𝐶 𝑀ℋ 𝐷)) |
42 | 41 | adantlr 711 | . 2 ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵)) → (((𝐶 ∨ℋ 𝐴) ∩ 𝐵) 𝑀ℋ ((𝐷 ∨ℋ 𝐴) ∩ 𝐵) ↔ 𝐶 𝑀ℋ 𝐷)) |
43 | 18, 42 | bitr2d 281 | 1 ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵)) → (𝐶 𝑀ℋ 𝐷 ↔ (𝐶 ∨ℋ 𝐴) 𝑀ℋ (𝐷 ∨ℋ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ∩ cin 3864 ⊆ wss 3865 class class class wbr 4968 (class class class)co 7023 Cℋ cch 28393 ∨ℋ chj 28397 𝑀ℋ cmd 28430 𝑀ℋ* cdmd 28431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-inf2 8957 ax-cc 9710 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 ax-pre-sup 10468 ax-addf 10469 ax-mulf 10470 ax-hilex 28463 ax-hfvadd 28464 ax-hvcom 28465 ax-hvass 28466 ax-hv0cl 28467 ax-hvaddid 28468 ax-hfvmul 28469 ax-hvmulid 28470 ax-hvmulass 28471 ax-hvdistr1 28472 ax-hvdistr2 28473 ax-hvmul0 28474 ax-hfi 28543 ax-his1 28546 ax-his2 28547 ax-his3 28548 ax-his4 28549 ax-hcompl 28666 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-fal 1538 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-iin 4834 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-se 5410 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-isom 6241 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-of 7274 df-om 7444 df-1st 7552 df-2nd 7553 df-supp 7689 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-2o 7961 df-oadd 7964 df-omul 7965 df-er 8146 df-map 8265 df-pm 8266 df-ixp 8318 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-fsupp 8687 df-fi 8728 df-sup 8759 df-inf 8760 df-oi 8827 df-card 9221 df-acn 9224 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-div 11152 df-nn 11493 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 df-7 11559 df-8 11560 df-9 11561 df-n0 11752 df-z 11836 df-dec 11953 df-uz 12098 df-q 12202 df-rp 12244 df-xneg 12361 df-xadd 12362 df-xmul 12363 df-ioo 12596 df-ico 12598 df-icc 12599 df-fz 12747 df-fzo 12888 df-fl 13016 df-seq 13224 df-exp 13284 df-hash 13545 df-cj 14296 df-re 14297 df-im 14298 df-sqrt 14432 df-abs 14433 df-clim 14683 df-rlim 14684 df-sum 14881 df-struct 16318 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-ress 16324 df-plusg 16411 df-mulr 16412 df-starv 16413 df-sca 16414 df-vsca 16415 df-ip 16416 df-tset 16417 df-ple 16418 df-ds 16420 df-unif 16421 df-hom 16422 df-cco 16423 df-rest 16529 df-topn 16530 df-0g 16548 df-gsum 16549 df-topgen 16550 df-pt 16551 df-prds 16554 df-xrs 16608 df-qtop 16613 df-imas 16614 df-xps 16616 df-mre 16690 df-mrc 16691 df-acs 16693 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-submnd 17779 df-mulg 17986 df-cntz 18192 df-cmn 18639 df-psmet 20223 df-xmet 20224 df-met 20225 df-bl 20226 df-mopn 20227 df-fbas 20228 df-fg 20229 df-cnfld 20232 df-top 21190 df-topon 21207 df-topsp 21229 df-bases 21242 df-cld 21315 df-ntr 21316 df-cls 21317 df-nei 21394 df-cn 21523 df-cnp 21524 df-lm 21525 df-haus 21611 df-tx 21858 df-hmeo 22051 df-fil 22142 df-fm 22234 df-flim 22235 df-flf 22236 df-xms 22617 df-ms 22618 df-tms 22619 df-cfil 23545 df-cau 23546 df-cmet 23547 df-grpo 27957 df-gid 27958 df-ginv 27959 df-gdiv 27960 df-ablo 28009 df-vc 28023 df-nv 28056 df-va 28059 df-ba 28060 df-sm 28061 df-0v 28062 df-vs 28063 df-nmcv 28064 df-ims 28065 df-dip 28165 df-ssp 28186 df-ph 28277 df-cbn 28327 df-hnorm 28432 df-hba 28433 df-hvsub 28435 df-hlim 28436 df-hcau 28437 df-sh 28671 df-ch 28685 df-oc 28716 df-ch0 28717 df-shs 28772 df-chj 28774 df-md 29744 df-dmd 29745 |
This theorem is referenced by: mdsldmd1i 29795 |
Copyright terms: Public domain | W3C validator |