Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnd2lem Structured version   Visualization version   GIF version

Theorem bnd2lem 37851
Description: Lemma for equivbnd2 37852 and similar theorems. (Contributed by Jeff Madsen, 16-Sep-2015.)
Hypothesis
Ref Expression
bnd2lem.1 𝐷 = (𝑀 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
bnd2lem ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌𝑋)

Proof of Theorem bnd2lem
StepHypRef Expression
1 bnd2lem.1 . . . . . 6 𝐷 = (𝑀 ↾ (𝑌 × 𝑌))
2 resss 5954 . . . . . 6 (𝑀 ↾ (𝑌 × 𝑌)) ⊆ 𝑀
31, 2eqsstri 3977 . . . . 5 𝐷𝑀
4 dmss 5846 . . . . 5 (𝐷𝑀 → dom 𝐷 ⊆ dom 𝑀)
53, 4mp1i 13 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝐷 ⊆ dom 𝑀)
6 bndmet 37841 . . . . . 6 (𝐷 ∈ (Bnd‘𝑌) → 𝐷 ∈ (Met‘𝑌))
7 metf 24246 . . . . . 6 (𝐷 ∈ (Met‘𝑌) → 𝐷:(𝑌 × 𝑌)⟶ℝ)
8 fdm 6665 . . . . . 6 (𝐷:(𝑌 × 𝑌)⟶ℝ → dom 𝐷 = (𝑌 × 𝑌))
96, 7, 83syl 18 . . . . 5 (𝐷 ∈ (Bnd‘𝑌) → dom 𝐷 = (𝑌 × 𝑌))
109adantl 481 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝐷 = (𝑌 × 𝑌))
11 metf 24246 . . . . . 6 (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
1211fdmd 6666 . . . . 5 (𝑀 ∈ (Met‘𝑋) → dom 𝑀 = (𝑋 × 𝑋))
1312adantr 480 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝑀 = (𝑋 × 𝑋))
145, 10, 133sstr3d 3985 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
15 dmss 5846 . . 3 ((𝑌 × 𝑌) ⊆ (𝑋 × 𝑋) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋))
1614, 15syl 17 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋))
17 dmxpid 5874 . 2 dom (𝑌 × 𝑌) = 𝑌
18 dmxpid 5874 . 2 dom (𝑋 × 𝑋) = 𝑋
1916, 17, 183sstr3g 3983 1 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wss 3898   × cxp 5617  dom cdm 5619  cres 5621  wf 6482  cfv 6486  cr 11012  Metcmet 21279  Bndcbnd 37827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-met 21287  df-bnd 37839
This theorem is referenced by:  equivbnd2  37852  prdsbnd2  37855  cntotbnd  37856  cnpwstotbnd  37857
  Copyright terms: Public domain W3C validator