Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnd2lem | Structured version Visualization version GIF version |
Description: Lemma for equivbnd2 35877 and similar theorems. (Contributed by Jeff Madsen, 16-Sep-2015.) |
Ref | Expression |
---|---|
bnd2lem.1 | ⊢ 𝐷 = (𝑀 ↾ (𝑌 × 𝑌)) |
Ref | Expression |
---|---|
bnd2lem | ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnd2lem.1 | . . . . . 6 ⊢ 𝐷 = (𝑀 ↾ (𝑌 × 𝑌)) | |
2 | resss 5905 | . . . . . 6 ⊢ (𝑀 ↾ (𝑌 × 𝑌)) ⊆ 𝑀 | |
3 | 1, 2 | eqsstri 3951 | . . . . 5 ⊢ 𝐷 ⊆ 𝑀 |
4 | dmss 5800 | . . . . 5 ⊢ (𝐷 ⊆ 𝑀 → dom 𝐷 ⊆ dom 𝑀) | |
5 | 3, 4 | mp1i 13 | . . . 4 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝐷 ⊆ dom 𝑀) |
6 | bndmet 35866 | . . . . . 6 ⊢ (𝐷 ∈ (Bnd‘𝑌) → 𝐷 ∈ (Met‘𝑌)) | |
7 | metf 23391 | . . . . . 6 ⊢ (𝐷 ∈ (Met‘𝑌) → 𝐷:(𝑌 × 𝑌)⟶ℝ) | |
8 | fdm 6593 | . . . . . 6 ⊢ (𝐷:(𝑌 × 𝑌)⟶ℝ → dom 𝐷 = (𝑌 × 𝑌)) | |
9 | 6, 7, 8 | 3syl 18 | . . . . 5 ⊢ (𝐷 ∈ (Bnd‘𝑌) → dom 𝐷 = (𝑌 × 𝑌)) |
10 | 9 | adantl 481 | . . . 4 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝐷 = (𝑌 × 𝑌)) |
11 | metf 23391 | . . . . . 6 ⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ) | |
12 | 11 | fdmd 6595 | . . . . 5 ⊢ (𝑀 ∈ (Met‘𝑋) → dom 𝑀 = (𝑋 × 𝑋)) |
13 | 12 | adantr 480 | . . . 4 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝑀 = (𝑋 × 𝑋)) |
14 | 5, 10, 13 | 3sstr3d 3963 | . . 3 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) |
15 | dmss 5800 | . . 3 ⊢ ((𝑌 × 𝑌) ⊆ (𝑋 × 𝑋) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋)) | |
16 | 14, 15 | syl 17 | . 2 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋)) |
17 | dmxpid 5828 | . 2 ⊢ dom (𝑌 × 𝑌) = 𝑌 | |
18 | dmxpid 5828 | . 2 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
19 | 16, 17, 18 | 3sstr3g 3961 | 1 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 × cxp 5578 dom cdm 5580 ↾ cres 5582 ⟶wf 6414 ‘cfv 6418 ℝcr 10801 Metcmet 20496 Bndcbnd 35852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-met 20504 df-bnd 35864 |
This theorem is referenced by: equivbnd2 35877 prdsbnd2 35880 cntotbnd 35881 cnpwstotbnd 35882 |
Copyright terms: Public domain | W3C validator |