Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnd2lem Structured version   Visualization version   GIF version

Theorem bnd2lem 37757
Description: Lemma for equivbnd2 37758 and similar theorems. (Contributed by Jeff Madsen, 16-Sep-2015.)
Hypothesis
Ref Expression
bnd2lem.1 𝐷 = (𝑀 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
bnd2lem ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌𝑋)

Proof of Theorem bnd2lem
StepHypRef Expression
1 bnd2lem.1 . . . . . 6 𝐷 = (𝑀 ↾ (𝑌 × 𝑌))
2 resss 5999 . . . . . 6 (𝑀 ↾ (𝑌 × 𝑌)) ⊆ 𝑀
31, 2eqsstri 4010 . . . . 5 𝐷𝑀
4 dmss 5893 . . . . 5 (𝐷𝑀 → dom 𝐷 ⊆ dom 𝑀)
53, 4mp1i 13 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝐷 ⊆ dom 𝑀)
6 bndmet 37747 . . . . . 6 (𝐷 ∈ (Bnd‘𝑌) → 𝐷 ∈ (Met‘𝑌))
7 metf 24285 . . . . . 6 (𝐷 ∈ (Met‘𝑌) → 𝐷:(𝑌 × 𝑌)⟶ℝ)
8 fdm 6725 . . . . . 6 (𝐷:(𝑌 × 𝑌)⟶ℝ → dom 𝐷 = (𝑌 × 𝑌))
96, 7, 83syl 18 . . . . 5 (𝐷 ∈ (Bnd‘𝑌) → dom 𝐷 = (𝑌 × 𝑌))
109adantl 481 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝐷 = (𝑌 × 𝑌))
11 metf 24285 . . . . . 6 (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
1211fdmd 6726 . . . . 5 (𝑀 ∈ (Met‘𝑋) → dom 𝑀 = (𝑋 × 𝑋))
1312adantr 480 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝑀 = (𝑋 × 𝑋))
145, 10, 133sstr3d 4018 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
15 dmss 5893 . . 3 ((𝑌 × 𝑌) ⊆ (𝑋 × 𝑋) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋))
1614, 15syl 17 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋))
17 dmxpid 5921 . 2 dom (𝑌 × 𝑌) = 𝑌
18 dmxpid 5921 . 2 dom (𝑋 × 𝑋) = 𝑋
1916, 17, 183sstr3g 4016 1 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wss 3931   × cxp 5663  dom cdm 5665  cres 5667  wf 6537  cfv 6541  cr 11136  Metcmet 21312  Bndcbnd 37733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-map 8850  df-met 21320  df-bnd 37745
This theorem is referenced by:  equivbnd2  37758  prdsbnd2  37761  cntotbnd  37762  cnpwstotbnd  37763
  Copyright terms: Public domain W3C validator