| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnd2lem | Structured version Visualization version GIF version | ||
| Description: Lemma for equivbnd2 37758 and similar theorems. (Contributed by Jeff Madsen, 16-Sep-2015.) |
| Ref | Expression |
|---|---|
| bnd2lem.1 | ⊢ 𝐷 = (𝑀 ↾ (𝑌 × 𝑌)) |
| Ref | Expression |
|---|---|
| bnd2lem | ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnd2lem.1 | . . . . . 6 ⊢ 𝐷 = (𝑀 ↾ (𝑌 × 𝑌)) | |
| 2 | resss 5999 | . . . . . 6 ⊢ (𝑀 ↾ (𝑌 × 𝑌)) ⊆ 𝑀 | |
| 3 | 1, 2 | eqsstri 4010 | . . . . 5 ⊢ 𝐷 ⊆ 𝑀 |
| 4 | dmss 5893 | . . . . 5 ⊢ (𝐷 ⊆ 𝑀 → dom 𝐷 ⊆ dom 𝑀) | |
| 5 | 3, 4 | mp1i 13 | . . . 4 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝐷 ⊆ dom 𝑀) |
| 6 | bndmet 37747 | . . . . . 6 ⊢ (𝐷 ∈ (Bnd‘𝑌) → 𝐷 ∈ (Met‘𝑌)) | |
| 7 | metf 24285 | . . . . . 6 ⊢ (𝐷 ∈ (Met‘𝑌) → 𝐷:(𝑌 × 𝑌)⟶ℝ) | |
| 8 | fdm 6725 | . . . . . 6 ⊢ (𝐷:(𝑌 × 𝑌)⟶ℝ → dom 𝐷 = (𝑌 × 𝑌)) | |
| 9 | 6, 7, 8 | 3syl 18 | . . . . 5 ⊢ (𝐷 ∈ (Bnd‘𝑌) → dom 𝐷 = (𝑌 × 𝑌)) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝐷 = (𝑌 × 𝑌)) |
| 11 | metf 24285 | . . . . . 6 ⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ) | |
| 12 | 11 | fdmd 6726 | . . . . 5 ⊢ (𝑀 ∈ (Met‘𝑋) → dom 𝑀 = (𝑋 × 𝑋)) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝑀 = (𝑋 × 𝑋)) |
| 14 | 5, 10, 13 | 3sstr3d 4018 | . . 3 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) |
| 15 | dmss 5893 | . . 3 ⊢ ((𝑌 × 𝑌) ⊆ (𝑋 × 𝑋) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋)) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋)) |
| 17 | dmxpid 5921 | . 2 ⊢ dom (𝑌 × 𝑌) = 𝑌 | |
| 18 | dmxpid 5921 | . 2 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
| 19 | 16, 17, 18 | 3sstr3g 4016 | 1 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 × cxp 5663 dom cdm 5665 ↾ cres 5667 ⟶wf 6537 ‘cfv 6541 ℝcr 11136 Metcmet 21312 Bndcbnd 37733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-map 8850 df-met 21320 df-bnd 37745 |
| This theorem is referenced by: equivbnd2 37758 prdsbnd2 37761 cntotbnd 37762 cnpwstotbnd 37763 |
| Copyright terms: Public domain | W3C validator |