![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnd2lem | Structured version Visualization version GIF version |
Description: Lemma for equivbnd2 37754 and similar theorems. (Contributed by Jeff Madsen, 16-Sep-2015.) |
Ref | Expression |
---|---|
bnd2lem.1 | ⊢ 𝐷 = (𝑀 ↾ (𝑌 × 𝑌)) |
Ref | Expression |
---|---|
bnd2lem | ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnd2lem.1 | . . . . . 6 ⊢ 𝐷 = (𝑀 ↾ (𝑌 × 𝑌)) | |
2 | resss 6033 | . . . . . 6 ⊢ (𝑀 ↾ (𝑌 × 𝑌)) ⊆ 𝑀 | |
3 | 1, 2 | eqsstri 4043 | . . . . 5 ⊢ 𝐷 ⊆ 𝑀 |
4 | dmss 5927 | . . . . 5 ⊢ (𝐷 ⊆ 𝑀 → dom 𝐷 ⊆ dom 𝑀) | |
5 | 3, 4 | mp1i 13 | . . . 4 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝐷 ⊆ dom 𝑀) |
6 | bndmet 37743 | . . . . . 6 ⊢ (𝐷 ∈ (Bnd‘𝑌) → 𝐷 ∈ (Met‘𝑌)) | |
7 | metf 24363 | . . . . . 6 ⊢ (𝐷 ∈ (Met‘𝑌) → 𝐷:(𝑌 × 𝑌)⟶ℝ) | |
8 | fdm 6758 | . . . . . 6 ⊢ (𝐷:(𝑌 × 𝑌)⟶ℝ → dom 𝐷 = (𝑌 × 𝑌)) | |
9 | 6, 7, 8 | 3syl 18 | . . . . 5 ⊢ (𝐷 ∈ (Bnd‘𝑌) → dom 𝐷 = (𝑌 × 𝑌)) |
10 | 9 | adantl 481 | . . . 4 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝐷 = (𝑌 × 𝑌)) |
11 | metf 24363 | . . . . . 6 ⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ) | |
12 | 11 | fdmd 6759 | . . . . 5 ⊢ (𝑀 ∈ (Met‘𝑋) → dom 𝑀 = (𝑋 × 𝑋)) |
13 | 12 | adantr 480 | . . . 4 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝑀 = (𝑋 × 𝑋)) |
14 | 5, 10, 13 | 3sstr3d 4055 | . . 3 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) |
15 | dmss 5927 | . . 3 ⊢ ((𝑌 × 𝑌) ⊆ (𝑋 × 𝑋) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋)) | |
16 | 14, 15 | syl 17 | . 2 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋)) |
17 | dmxpid 5955 | . 2 ⊢ dom (𝑌 × 𝑌) = 𝑌 | |
18 | dmxpid 5955 | . 2 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
19 | 16, 17, 18 | 3sstr3g 4053 | 1 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 × cxp 5698 dom cdm 5700 ↾ cres 5702 ⟶wf 6571 ‘cfv 6575 ℝcr 11185 Metcmet 21375 Bndcbnd 37729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-map 8888 df-met 21383 df-bnd 37741 |
This theorem is referenced by: equivbnd2 37754 prdsbnd2 37757 cntotbnd 37758 cnpwstotbnd 37759 |
Copyright terms: Public domain | W3C validator |