![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnd2lem | Structured version Visualization version GIF version |
Description: Lemma for equivbnd2 37127 and similar theorems. (Contributed by Jeff Madsen, 16-Sep-2015.) |
Ref | Expression |
---|---|
bnd2lem.1 | β’ π· = (π βΎ (π Γ π)) |
Ref | Expression |
---|---|
bnd2lem | β’ ((π β (Metβπ) β§ π· β (Bndβπ)) β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnd2lem.1 | . . . . . 6 β’ π· = (π βΎ (π Γ π)) | |
2 | resss 6006 | . . . . . 6 β’ (π βΎ (π Γ π)) β π | |
3 | 1, 2 | eqsstri 4016 | . . . . 5 β’ π· β π |
4 | dmss 5902 | . . . . 5 β’ (π· β π β dom π· β dom π) | |
5 | 3, 4 | mp1i 13 | . . . 4 β’ ((π β (Metβπ) β§ π· β (Bndβπ)) β dom π· β dom π) |
6 | bndmet 37116 | . . . . . 6 β’ (π· β (Bndβπ) β π· β (Metβπ)) | |
7 | metf 24157 | . . . . . 6 β’ (π· β (Metβπ) β π·:(π Γ π)βΆβ) | |
8 | fdm 6726 | . . . . . 6 β’ (π·:(π Γ π)βΆβ β dom π· = (π Γ π)) | |
9 | 6, 7, 8 | 3syl 18 | . . . . 5 β’ (π· β (Bndβπ) β dom π· = (π Γ π)) |
10 | 9 | adantl 481 | . . . 4 β’ ((π β (Metβπ) β§ π· β (Bndβπ)) β dom π· = (π Γ π)) |
11 | metf 24157 | . . . . . 6 β’ (π β (Metβπ) β π:(π Γ π)βΆβ) | |
12 | 11 | fdmd 6728 | . . . . 5 β’ (π β (Metβπ) β dom π = (π Γ π)) |
13 | 12 | adantr 480 | . . . 4 β’ ((π β (Metβπ) β§ π· β (Bndβπ)) β dom π = (π Γ π)) |
14 | 5, 10, 13 | 3sstr3d 4028 | . . 3 β’ ((π β (Metβπ) β§ π· β (Bndβπ)) β (π Γ π) β (π Γ π)) |
15 | dmss 5902 | . . 3 β’ ((π Γ π) β (π Γ π) β dom (π Γ π) β dom (π Γ π)) | |
16 | 14, 15 | syl 17 | . 2 β’ ((π β (Metβπ) β§ π· β (Bndβπ)) β dom (π Γ π) β dom (π Γ π)) |
17 | dmxpid 5929 | . 2 β’ dom (π Γ π) = π | |
18 | dmxpid 5929 | . 2 β’ dom (π Γ π) = π | |
19 | 16, 17, 18 | 3sstr3g 4026 | 1 β’ ((π β (Metβπ) β§ π· β (Bndβπ)) β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β wss 3948 Γ cxp 5674 dom cdm 5676 βΎ cres 5678 βΆwf 6539 βcfv 6543 βcr 11115 Metcmet 21220 Bndcbnd 37102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8828 df-met 21228 df-bnd 37114 |
This theorem is referenced by: equivbnd2 37127 prdsbnd2 37130 cntotbnd 37131 cnpwstotbnd 37132 |
Copyright terms: Public domain | W3C validator |