Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeocls Structured version   Visualization version   GIF version

Theorem hmeocls 22458
 Description: Homeomorphisms preserve closures. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1 𝑋 = 𝐽
Assertion
Ref Expression
hmeocls ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((cls‘𝐾)‘(𝐹𝐴)) = (𝐹 “ ((cls‘𝐽)‘𝐴)))

Proof of Theorem hmeocls
StepHypRef Expression
1 hmeocnvcn 22451 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
2 hmeoopn.1 . . . . 5 𝑋 = 𝐽
32cncls2i 21960 . . . 4 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴𝑋) → ((cls‘𝐾)‘(𝐹𝐴)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝐴)))
41, 3sylan 584 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((cls‘𝐾)‘(𝐹𝐴)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝐴)))
5 imacnvcnv 6033 . . . 4 (𝐹𝐴) = (𝐹𝐴)
65fveq2i 6659 . . 3 ((cls‘𝐾)‘(𝐹𝐴)) = ((cls‘𝐾)‘(𝐹𝐴))
7 imacnvcnv 6033 . . 3 (𝐹 “ ((cls‘𝐽)‘𝐴)) = (𝐹 “ ((cls‘𝐽)‘𝐴))
84, 6, 73sstr3g 3937 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((cls‘𝐾)‘(𝐹𝐴)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝐴)))
9 hmeocn 22450 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
102cnclsi 21962 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹 “ ((cls‘𝐽)‘𝐴)) ⊆ ((cls‘𝐾)‘(𝐹𝐴)))
119, 10sylan 584 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ ((cls‘𝐽)‘𝐴)) ⊆ ((cls‘𝐾)‘(𝐹𝐴)))
128, 11eqssd 3910 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((cls‘𝐾)‘(𝐹𝐴)) = (𝐹 “ ((cls‘𝐽)‘𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   = wceq 1539   ∈ wcel 2112   ⊆ wss 3859  ∪ cuni 4796  ◡ccnv 5521   “ cima 5525  ‘cfv 6333  (class class class)co 7148  clsccl 21708   Cn ccn 21914  Homeochmeo 22443 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-op 4527  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5428  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-ov 7151  df-oprab 7152  df-mpo 7153  df-map 8416  df-top 21584  df-topon 21601  df-cld 21709  df-cls 21711  df-cn 21917  df-hmeo 22445 This theorem is referenced by:  reghmph  22483  nrmhmph  22484  snclseqg  22806
 Copyright terms: Public domain W3C validator