MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeocls Structured version   Visualization version   GIF version

Theorem hmeocls 22458
Description: Homeomorphisms preserve closures. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1 𝑋 = 𝐽
Assertion
Ref Expression
hmeocls ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((cls‘𝐾)‘(𝐹𝐴)) = (𝐹 “ ((cls‘𝐽)‘𝐴)))

Proof of Theorem hmeocls
StepHypRef Expression
1 hmeocnvcn 22451 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
2 hmeoopn.1 . . . . 5 𝑋 = 𝐽
32cncls2i 21960 . . . 4 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴𝑋) → ((cls‘𝐾)‘(𝐹𝐴)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝐴)))
41, 3sylan 584 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((cls‘𝐾)‘(𝐹𝐴)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝐴)))
5 imacnvcnv 6033 . . . 4 (𝐹𝐴) = (𝐹𝐴)
65fveq2i 6659 . . 3 ((cls‘𝐾)‘(𝐹𝐴)) = ((cls‘𝐾)‘(𝐹𝐴))
7 imacnvcnv 6033 . . 3 (𝐹 “ ((cls‘𝐽)‘𝐴)) = (𝐹 “ ((cls‘𝐽)‘𝐴))
84, 6, 73sstr3g 3937 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((cls‘𝐾)‘(𝐹𝐴)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝐴)))
9 hmeocn 22450 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
102cnclsi 21962 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹 “ ((cls‘𝐽)‘𝐴)) ⊆ ((cls‘𝐾)‘(𝐹𝐴)))
119, 10sylan 584 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ ((cls‘𝐽)‘𝐴)) ⊆ ((cls‘𝐾)‘(𝐹𝐴)))
128, 11eqssd 3910 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((cls‘𝐾)‘(𝐹𝐴)) = (𝐹 “ ((cls‘𝐽)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  wss 3859   cuni 4796  ccnv 5521  cima 5525  cfv 6333  (class class class)co 7148  clsccl 21708   Cn ccn 21914  Homeochmeo 22443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-op 4527  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5428  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-ov 7151  df-oprab 7152  df-mpo 7153  df-map 8416  df-top 21584  df-topon 21601  df-cld 21709  df-cls 21711  df-cn 21917  df-hmeo 22445
This theorem is referenced by:  reghmph  22483  nrmhmph  22484  snclseqg  22806
  Copyright terms: Public domain W3C validator