Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hmeocls | Structured version Visualization version GIF version |
Description: Homeomorphisms preserve closures. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
hmeoopn.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
hmeocls | ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐾)‘(𝐹 “ 𝐴)) = (𝐹 “ ((cls‘𝐽)‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocnvcn 22451 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) | |
2 | hmeoopn.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | cncls2i 21960 | . . . 4 ⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐾)‘(◡◡𝐹 “ 𝐴)) ⊆ (◡◡𝐹 “ ((cls‘𝐽)‘𝐴))) |
4 | 1, 3 | sylan 584 | . . 3 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐾)‘(◡◡𝐹 “ 𝐴)) ⊆ (◡◡𝐹 “ ((cls‘𝐽)‘𝐴))) |
5 | imacnvcnv 6033 | . . . 4 ⊢ (◡◡𝐹 “ 𝐴) = (𝐹 “ 𝐴) | |
6 | 5 | fveq2i 6659 | . . 3 ⊢ ((cls‘𝐾)‘(◡◡𝐹 “ 𝐴)) = ((cls‘𝐾)‘(𝐹 “ 𝐴)) |
7 | imacnvcnv 6033 | . . 3 ⊢ (◡◡𝐹 “ ((cls‘𝐽)‘𝐴)) = (𝐹 “ ((cls‘𝐽)‘𝐴)) | |
8 | 4, 6, 7 | 3sstr3g 3937 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐾)‘(𝐹 “ 𝐴)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝐴))) |
9 | hmeocn 22450 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
10 | 2 | cnclsi 21962 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 “ ((cls‘𝐽)‘𝐴)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝐴))) |
11 | 9, 10 | sylan 584 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 “ ((cls‘𝐽)‘𝐴)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝐴))) |
12 | 8, 11 | eqssd 3910 | 1 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐾)‘(𝐹 “ 𝐴)) = (𝐹 “ ((cls‘𝐽)‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ⊆ wss 3859 ∪ cuni 4796 ◡ccnv 5521 “ cima 5525 ‘cfv 6333 (class class class)co 7148 clsccl 21708 Cn ccn 21914 Homeochmeo 22443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-op 4527 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5428 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-ov 7151 df-oprab 7152 df-mpo 7153 df-map 8416 df-top 21584 df-topon 21601 df-cld 21709 df-cls 21711 df-cn 21917 df-hmeo 22445 |
This theorem is referenced by: reghmph 22483 nrmhmph 22484 snclseqg 22806 |
Copyright terms: Public domain | W3C validator |