Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hmeocls | Structured version Visualization version GIF version |
Description: Homeomorphisms preserve closures. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
hmeoopn.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
hmeocls | ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐾)‘(𝐹 “ 𝐴)) = (𝐹 “ ((cls‘𝐽)‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocnvcn 22893 | . . . 4 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) | |
2 | hmeoopn.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | cncls2i 22402 | . . . 4 ⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐾)‘(◡◡𝐹 “ 𝐴)) ⊆ (◡◡𝐹 “ ((cls‘𝐽)‘𝐴))) |
4 | 1, 3 | sylan 579 | . . 3 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐾)‘(◡◡𝐹 “ 𝐴)) ⊆ (◡◡𝐹 “ ((cls‘𝐽)‘𝐴))) |
5 | imacnvcnv 6106 | . . . 4 ⊢ (◡◡𝐹 “ 𝐴) = (𝐹 “ 𝐴) | |
6 | 5 | fveq2i 6771 | . . 3 ⊢ ((cls‘𝐾)‘(◡◡𝐹 “ 𝐴)) = ((cls‘𝐾)‘(𝐹 “ 𝐴)) |
7 | imacnvcnv 6106 | . . 3 ⊢ (◡◡𝐹 “ ((cls‘𝐽)‘𝐴)) = (𝐹 “ ((cls‘𝐽)‘𝐴)) | |
8 | 4, 6, 7 | 3sstr3g 3969 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐾)‘(𝐹 “ 𝐴)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝐴))) |
9 | hmeocn 22892 | . . 3 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
10 | 2 | cnclsi 22404 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 “ ((cls‘𝐽)‘𝐴)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝐴))) |
11 | 9, 10 | sylan 579 | . 2 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 “ ((cls‘𝐽)‘𝐴)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝐴))) |
12 | 8, 11 | eqssd 3942 | 1 ⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐾)‘(𝐹 “ 𝐴)) = (𝐹 “ ((cls‘𝐽)‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 ∪ cuni 4844 ◡ccnv 5587 “ cima 5591 ‘cfv 6430 (class class class)co 7268 clsccl 22150 Cn ccn 22356 Homeochmeo 22885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-map 8591 df-top 22024 df-topon 22041 df-cld 22151 df-cls 22153 df-cn 22359 df-hmeo 22887 |
This theorem is referenced by: reghmph 22925 nrmhmph 22926 snclseqg 23248 |
Copyright terms: Public domain | W3C validator |