Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssbnd Structured version   Visualization version   GIF version

Theorem ssbnd 35226
Description: A subset of a metric space is bounded iff it is contained in a ball around 𝑃, for any 𝑃 in the larger space. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypothesis
Ref Expression
ssbnd.2 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
ssbnd ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → (𝑁 ∈ (Bnd‘𝑌) ↔ ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
Distinct variable groups:   𝑀,𝑑   𝑁,𝑑   𝑃,𝑑   𝑋,𝑑   𝑌,𝑑

Proof of Theorem ssbnd
Dummy variables 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 10632 . . . . . . 7 0 ∈ ℝ
21ne0ii 4253 . . . . . 6 ℝ ≠ ∅
3 0ss 4304 . . . . . . . 8 ∅ ⊆ (𝑃(ball‘𝑀)𝑑)
4 sseq1 3940 . . . . . . . 8 (𝑌 = ∅ → (𝑌 ⊆ (𝑃(ball‘𝑀)𝑑) ↔ ∅ ⊆ (𝑃(ball‘𝑀)𝑑)))
53, 4mpbiri 261 . . . . . . 7 (𝑌 = ∅ → 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))
65ralrimivw 3150 . . . . . 6 (𝑌 = ∅ → ∀𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))
7 r19.2z 4398 . . . . . 6 ((ℝ ≠ ∅ ∧ ∀𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))
82, 6, 7sylancr 590 . . . . 5 (𝑌 = ∅ → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))
98a1i 11 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (Bnd‘𝑌)) → (𝑌 = ∅ → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
10 isbnd2 35221 . . . . . 6 ((𝑁 ∈ (Bnd‘𝑌) ∧ 𝑌 ≠ ∅) ↔ (𝑁 ∈ (∞Met‘𝑌) ∧ ∃𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))
11 simplll 774 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑀 ∈ (Met‘𝑋))
12 ssbnd.2 . . . . . . . . . . . . . . . . . . . . 21 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
1312dmeqi 5737 . . . . . . . . . . . . . . . . . . . 20 dom 𝑁 = dom (𝑀 ↾ (𝑌 × 𝑌))
14 dmres 5840 . . . . . . . . . . . . . . . . . . . 20 dom (𝑀 ↾ (𝑌 × 𝑌)) = ((𝑌 × 𝑌) ∩ dom 𝑀)
1513, 14eqtri 2821 . . . . . . . . . . . . . . . . . . 19 dom 𝑁 = ((𝑌 × 𝑌) ∩ dom 𝑀)
16 xmetf 22936 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (∞Met‘𝑌) → 𝑁:(𝑌 × 𝑌)⟶ℝ*)
1716fdmd 6497 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (∞Met‘𝑌) → dom 𝑁 = (𝑌 × 𝑌))
1815, 17syl5eqr 2847 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (∞Met‘𝑌) → ((𝑌 × 𝑌) ∩ dom 𝑀) = (𝑌 × 𝑌))
19 df-ss 3898 . . . . . . . . . . . . . . . . . 18 ((𝑌 × 𝑌) ⊆ dom 𝑀 ↔ ((𝑌 × 𝑌) ∩ dom 𝑀) = (𝑌 × 𝑌))
2018, 19sylibr 237 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (∞Met‘𝑌) → (𝑌 × 𝑌) ⊆ dom 𝑀)
2120ad2antlr 726 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑌 × 𝑌) ⊆ dom 𝑀)
22 metf 22937 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
2322fdmd 6497 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (Met‘𝑋) → dom 𝑀 = (𝑋 × 𝑋))
2423ad3antrrr 729 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → dom 𝑀 = (𝑋 × 𝑋))
2521, 24sseqtrd 3955 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
26 dmss 5735 . . . . . . . . . . . . . . 15 ((𝑌 × 𝑌) ⊆ (𝑋 × 𝑋) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋))
2725, 26syl 17 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋))
28 dmxpid 5764 . . . . . . . . . . . . . 14 dom (𝑌 × 𝑌) = 𝑌
29 dmxpid 5764 . . . . . . . . . . . . . 14 dom (𝑋 × 𝑋) = 𝑋
3027, 28, 293sstr3g 3959 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑌𝑋)
31 simprl 770 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑦𝑌)
3230, 31sseldd 3916 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑦𝑋)
33 simpllr 775 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑃𝑋)
34 metcl 22939 . . . . . . . . . . . 12 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋𝑃𝑋) → (𝑦𝑀𝑃) ∈ ℝ)
3511, 32, 33, 34syl3anc 1368 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦𝑀𝑃) ∈ ℝ)
36 rpre 12385 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
3736ad2antll 728 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ)
3835, 37readdcld 10659 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → ((𝑦𝑀𝑃) + 𝑟) ∈ ℝ)
39 metxmet 22941 . . . . . . . . . . . . 13 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
4011, 39syl 17 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑀 ∈ (∞Met‘𝑋))
4132, 31elind 4121 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑦 ∈ (𝑋𝑌))
42 rpxr 12386 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
4342ad2antll 728 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ*)
4412blres 23038 . . . . . . . . . . . 12 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌) ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝑁)𝑟) = ((𝑦(ball‘𝑀)𝑟) ∩ 𝑌))
4540, 41, 43, 44syl3anc 1368 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦(ball‘𝑁)𝑟) = ((𝑦(ball‘𝑀)𝑟) ∩ 𝑌))
46 inss1 4155 . . . . . . . . . . . 12 ((𝑦(ball‘𝑀)𝑟) ∩ 𝑌) ⊆ (𝑦(ball‘𝑀)𝑟)
4735leidd 11195 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦𝑀𝑃) ≤ (𝑦𝑀𝑃))
4835recnd 10658 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦𝑀𝑃) ∈ ℂ)
4937recnd 10658 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑟 ∈ ℂ)
5048, 49pncand 10987 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (((𝑦𝑀𝑃) + 𝑟) − 𝑟) = (𝑦𝑀𝑃))
5147, 50breqtrrd 5058 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦𝑀𝑃) ≤ (((𝑦𝑀𝑃) + 𝑟) − 𝑟))
52 blss2 23011 . . . . . . . . . . . . 13 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑃𝑋) ∧ (𝑟 ∈ ℝ ∧ ((𝑦𝑀𝑃) + 𝑟) ∈ ℝ ∧ (𝑦𝑀𝑃) ≤ (((𝑦𝑀𝑃) + 𝑟) − 𝑟))) → (𝑦(ball‘𝑀)𝑟) ⊆ (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟)))
5340, 32, 33, 37, 38, 51, 52syl33anc 1382 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦(ball‘𝑀)𝑟) ⊆ (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟)))
5446, 53sstrid 3926 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → ((𝑦(ball‘𝑀)𝑟) ∩ 𝑌) ⊆ (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟)))
5545, 54eqsstrd 3953 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟)))
56 oveq2 7143 . . . . . . . . . . . 12 (𝑑 = ((𝑦𝑀𝑃) + 𝑟) → (𝑃(ball‘𝑀)𝑑) = (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟)))
5756sseq2d 3947 . . . . . . . . . . 11 (𝑑 = ((𝑦𝑀𝑃) + 𝑟) → ((𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)𝑑) ↔ (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟))))
5857rspcev 3571 . . . . . . . . . 10 ((((𝑦𝑀𝑃) + 𝑟) ∈ ℝ ∧ (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟))) → ∃𝑑 ∈ ℝ (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)𝑑))
5938, 55, 58syl2anc 587 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → ∃𝑑 ∈ ℝ (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)𝑑))
60 sseq1 3940 . . . . . . . . . 10 (𝑌 = (𝑦(ball‘𝑁)𝑟) → (𝑌 ⊆ (𝑃(ball‘𝑀)𝑑) ↔ (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)𝑑)))
6160rexbidv 3256 . . . . . . . . 9 (𝑌 = (𝑦(ball‘𝑁)𝑟) → (∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑) ↔ ∃𝑑 ∈ ℝ (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)𝑑)))
6259, 61syl5ibrcom 250 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑌 = (𝑦(ball‘𝑁)𝑟) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
6362rexlimdvva 3253 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (∃𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
6463expimpd 457 . . . . . 6 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → ((𝑁 ∈ (∞Met‘𝑌) ∧ ∃𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
6510, 64syl5bi 245 . . . . 5 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → ((𝑁 ∈ (Bnd‘𝑌) ∧ 𝑌 ≠ ∅) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
6665expdimp 456 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (Bnd‘𝑌)) → (𝑌 ≠ ∅ → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
679, 66pm2.61dne 3073 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (Bnd‘𝑌)) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))
6867ex 416 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → (𝑁 ∈ (Bnd‘𝑌) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
69 simprr 772 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))
70 xpss12 5534 . . . . . . 7 ((𝑌 ⊆ (𝑃(ball‘𝑀)𝑑) ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)) → (𝑌 × 𝑌) ⊆ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑)))
7169, 69, 70syl2anc 587 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → (𝑌 × 𝑌) ⊆ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑)))
7271resabs1d 5849 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → ((𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ↾ (𝑌 × 𝑌)) = (𝑀 ↾ (𝑌 × 𝑌)))
7372, 12eqtr4di 2851 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → ((𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ↾ (𝑌 × 𝑌)) = 𝑁)
74 blbnd 35225 . . . . . . . 8 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑑 ∈ ℝ) → (𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ∈ (Bnd‘(𝑃(ball‘𝑀)𝑑)))
7539, 74syl3an1 1160 . . . . . . 7 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑑 ∈ ℝ) → (𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ∈ (Bnd‘(𝑃(ball‘𝑀)𝑑)))
76753expa 1115 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑑 ∈ ℝ) → (𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ∈ (Bnd‘(𝑃(ball‘𝑀)𝑑)))
7776adantrr 716 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → (𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ∈ (Bnd‘(𝑃(ball‘𝑀)𝑑)))
78 bndss 35224 . . . . 5 (((𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ∈ (Bnd‘(𝑃(ball‘𝑀)𝑑)) ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)) → ((𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ↾ (𝑌 × 𝑌)) ∈ (Bnd‘𝑌))
7977, 69, 78syl2anc 587 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → ((𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ↾ (𝑌 × 𝑌)) ∈ (Bnd‘𝑌))
8073, 79eqeltrrd 2891 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → 𝑁 ∈ (Bnd‘𝑌))
8180rexlimdvaa 3244 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → (∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑) → 𝑁 ∈ (Bnd‘𝑌)))
8268, 81impbid 215 1 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → (𝑁 ∈ (Bnd‘𝑌) ↔ ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  cin 3880  wss 3881  c0 4243   class class class wbr 5030   × cxp 5517  dom cdm 5519  cres 5521  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526   + caddc 10529  *cxr 10663  cle 10665  cmin 10859  +crp 12377  ∞Metcxmet 20076  Metcmet 20077  ballcbl 20078  Bndcbnd 35205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-ec 8274  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-2 11688  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-bnd 35217
This theorem is referenced by:  prdsbnd2  35233  cntotbnd  35234
  Copyright terms: Public domain W3C validator