Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssbnd Structured version   Visualization version   GIF version

Theorem ssbnd 37748
Description: A subset of a metric space is bounded iff it is contained in a ball around 𝑃, for any 𝑃 in the larger space. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypothesis
Ref Expression
ssbnd.2 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
ssbnd ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → (𝑁 ∈ (Bnd‘𝑌) ↔ ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
Distinct variable groups:   𝑀,𝑑   𝑁,𝑑   𝑃,𝑑   𝑋,𝑑   𝑌,𝑑

Proof of Theorem ssbnd
Dummy variables 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 11292 . . . . . . 7 0 ∈ ℝ
21ne0ii 4367 . . . . . 6 ℝ ≠ ∅
3 0ss 4423 . . . . . . . 8 ∅ ⊆ (𝑃(ball‘𝑀)𝑑)
4 sseq1 4034 . . . . . . . 8 (𝑌 = ∅ → (𝑌 ⊆ (𝑃(ball‘𝑀)𝑑) ↔ ∅ ⊆ (𝑃(ball‘𝑀)𝑑)))
53, 4mpbiri 258 . . . . . . 7 (𝑌 = ∅ → 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))
65ralrimivw 3156 . . . . . 6 (𝑌 = ∅ → ∀𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))
7 r19.2z 4518 . . . . . 6 ((ℝ ≠ ∅ ∧ ∀𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))
82, 6, 7sylancr 586 . . . . 5 (𝑌 = ∅ → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))
98a1i 11 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (Bnd‘𝑌)) → (𝑌 = ∅ → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
10 isbnd2 37743 . . . . . 6 ((𝑁 ∈ (Bnd‘𝑌) ∧ 𝑌 ≠ ∅) ↔ (𝑁 ∈ (∞Met‘𝑌) ∧ ∃𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))
11 simplll 774 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑀 ∈ (Met‘𝑋))
12 ssbnd.2 . . . . . . . . . . . . . . . . . . . . 21 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
1312dmeqi 5929 . . . . . . . . . . . . . . . . . . . 20 dom 𝑁 = dom (𝑀 ↾ (𝑌 × 𝑌))
14 dmres 6041 . . . . . . . . . . . . . . . . . . . 20 dom (𝑀 ↾ (𝑌 × 𝑌)) = ((𝑌 × 𝑌) ∩ dom 𝑀)
1513, 14eqtri 2768 . . . . . . . . . . . . . . . . . . 19 dom 𝑁 = ((𝑌 × 𝑌) ∩ dom 𝑀)
16 xmetf 24360 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (∞Met‘𝑌) → 𝑁:(𝑌 × 𝑌)⟶ℝ*)
1716fdmd 6757 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (∞Met‘𝑌) → dom 𝑁 = (𝑌 × 𝑌))
1815, 17eqtr3id 2794 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (∞Met‘𝑌) → ((𝑌 × 𝑌) ∩ dom 𝑀) = (𝑌 × 𝑌))
19 dfss2 3994 . . . . . . . . . . . . . . . . . 18 ((𝑌 × 𝑌) ⊆ dom 𝑀 ↔ ((𝑌 × 𝑌) ∩ dom 𝑀) = (𝑌 × 𝑌))
2018, 19sylibr 234 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (∞Met‘𝑌) → (𝑌 × 𝑌) ⊆ dom 𝑀)
2120ad2antlr 726 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑌 × 𝑌) ⊆ dom 𝑀)
22 metf 24361 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
2322fdmd 6757 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (Met‘𝑋) → dom 𝑀 = (𝑋 × 𝑋))
2423ad3antrrr 729 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → dom 𝑀 = (𝑋 × 𝑋))
2521, 24sseqtrd 4049 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
26 dmss 5927 . . . . . . . . . . . . . . 15 ((𝑌 × 𝑌) ⊆ (𝑋 × 𝑋) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋))
2725, 26syl 17 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋))
28 dmxpid 5955 . . . . . . . . . . . . . 14 dom (𝑌 × 𝑌) = 𝑌
29 dmxpid 5955 . . . . . . . . . . . . . 14 dom (𝑋 × 𝑋) = 𝑋
3027, 28, 293sstr3g 4053 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑌𝑋)
31 simprl 770 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑦𝑌)
3230, 31sseldd 4009 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑦𝑋)
33 simpllr 775 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑃𝑋)
34 metcl 24363 . . . . . . . . . . . 12 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋𝑃𝑋) → (𝑦𝑀𝑃) ∈ ℝ)
3511, 32, 33, 34syl3anc 1371 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦𝑀𝑃) ∈ ℝ)
36 rpre 13065 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
3736ad2antll 728 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ)
3835, 37readdcld 11319 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → ((𝑦𝑀𝑃) + 𝑟) ∈ ℝ)
39 metxmet 24365 . . . . . . . . . . . . 13 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
4011, 39syl 17 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑀 ∈ (∞Met‘𝑋))
4132, 31elind 4223 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑦 ∈ (𝑋𝑌))
42 rpxr 13066 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
4342ad2antll 728 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ*)
4412blres 24462 . . . . . . . . . . . 12 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌) ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝑁)𝑟) = ((𝑦(ball‘𝑀)𝑟) ∩ 𝑌))
4540, 41, 43, 44syl3anc 1371 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦(ball‘𝑁)𝑟) = ((𝑦(ball‘𝑀)𝑟) ∩ 𝑌))
46 inss1 4258 . . . . . . . . . . . 12 ((𝑦(ball‘𝑀)𝑟) ∩ 𝑌) ⊆ (𝑦(ball‘𝑀)𝑟)
4735leidd 11856 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦𝑀𝑃) ≤ (𝑦𝑀𝑃))
4835recnd 11318 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦𝑀𝑃) ∈ ℂ)
4937recnd 11318 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑟 ∈ ℂ)
5048, 49pncand 11648 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (((𝑦𝑀𝑃) + 𝑟) − 𝑟) = (𝑦𝑀𝑃))
5147, 50breqtrrd 5194 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦𝑀𝑃) ≤ (((𝑦𝑀𝑃) + 𝑟) − 𝑟))
52 blss2 24435 . . . . . . . . . . . . 13 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑃𝑋) ∧ (𝑟 ∈ ℝ ∧ ((𝑦𝑀𝑃) + 𝑟) ∈ ℝ ∧ (𝑦𝑀𝑃) ≤ (((𝑦𝑀𝑃) + 𝑟) − 𝑟))) → (𝑦(ball‘𝑀)𝑟) ⊆ (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟)))
5340, 32, 33, 37, 38, 51, 52syl33anc 1385 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦(ball‘𝑀)𝑟) ⊆ (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟)))
5446, 53sstrid 4020 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → ((𝑦(ball‘𝑀)𝑟) ∩ 𝑌) ⊆ (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟)))
5545, 54eqsstrd 4047 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟)))
56 oveq2 7456 . . . . . . . . . . . 12 (𝑑 = ((𝑦𝑀𝑃) + 𝑟) → (𝑃(ball‘𝑀)𝑑) = (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟)))
5756sseq2d 4041 . . . . . . . . . . 11 (𝑑 = ((𝑦𝑀𝑃) + 𝑟) → ((𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)𝑑) ↔ (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟))))
5857rspcev 3635 . . . . . . . . . 10 ((((𝑦𝑀𝑃) + 𝑟) ∈ ℝ ∧ (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟))) → ∃𝑑 ∈ ℝ (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)𝑑))
5938, 55, 58syl2anc 583 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → ∃𝑑 ∈ ℝ (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)𝑑))
60 sseq1 4034 . . . . . . . . . 10 (𝑌 = (𝑦(ball‘𝑁)𝑟) → (𝑌 ⊆ (𝑃(ball‘𝑀)𝑑) ↔ (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)𝑑)))
6160rexbidv 3185 . . . . . . . . 9 (𝑌 = (𝑦(ball‘𝑁)𝑟) → (∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑) ↔ ∃𝑑 ∈ ℝ (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)𝑑)))
6259, 61syl5ibrcom 247 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑌 = (𝑦(ball‘𝑁)𝑟) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
6362rexlimdvva 3219 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (∃𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
6463expimpd 453 . . . . . 6 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → ((𝑁 ∈ (∞Met‘𝑌) ∧ ∃𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
6510, 64biimtrid 242 . . . . 5 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → ((𝑁 ∈ (Bnd‘𝑌) ∧ 𝑌 ≠ ∅) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
6665expdimp 452 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (Bnd‘𝑌)) → (𝑌 ≠ ∅ → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
679, 66pm2.61dne 3034 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (Bnd‘𝑌)) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))
6867ex 412 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → (𝑁 ∈ (Bnd‘𝑌) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
69 simprr 772 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))
70 xpss12 5715 . . . . . . 7 ((𝑌 ⊆ (𝑃(ball‘𝑀)𝑑) ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)) → (𝑌 × 𝑌) ⊆ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑)))
7169, 69, 70syl2anc 583 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → (𝑌 × 𝑌) ⊆ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑)))
7271resabs1d 6037 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → ((𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ↾ (𝑌 × 𝑌)) = (𝑀 ↾ (𝑌 × 𝑌)))
7372, 12eqtr4di 2798 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → ((𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ↾ (𝑌 × 𝑌)) = 𝑁)
74 blbnd 37747 . . . . . . . 8 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑑 ∈ ℝ) → (𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ∈ (Bnd‘(𝑃(ball‘𝑀)𝑑)))
7539, 74syl3an1 1163 . . . . . . 7 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑑 ∈ ℝ) → (𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ∈ (Bnd‘(𝑃(ball‘𝑀)𝑑)))
76753expa 1118 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑑 ∈ ℝ) → (𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ∈ (Bnd‘(𝑃(ball‘𝑀)𝑑)))
7776adantrr 716 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → (𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ∈ (Bnd‘(𝑃(ball‘𝑀)𝑑)))
78 bndss 37746 . . . . 5 (((𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ∈ (Bnd‘(𝑃(ball‘𝑀)𝑑)) ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)) → ((𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ↾ (𝑌 × 𝑌)) ∈ (Bnd‘𝑌))
7977, 69, 78syl2anc 583 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → ((𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ↾ (𝑌 × 𝑌)) ∈ (Bnd‘𝑌))
8073, 79eqeltrrd 2845 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → 𝑁 ∈ (Bnd‘𝑌))
8180rexlimdvaa 3162 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → (∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑) → 𝑁 ∈ (Bnd‘𝑌)))
8268, 81impbid 212 1 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → (𝑁 ∈ (Bnd‘𝑌) ↔ ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cin 3975  wss 3976  c0 4352   class class class wbr 5166   × cxp 5698  dom cdm 5700  cres 5702  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184   + caddc 11187  *cxr 11323  cle 11325  cmin 11520  +crp 13057  ∞Metcxmet 21372  Metcmet 21373  ballcbl 21374  Bndcbnd 37727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-ec 8765  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-bnd 37739
This theorem is referenced by:  prdsbnd2  37755  cntotbnd  37756
  Copyright terms: Public domain W3C validator