Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssbnd Structured version   Visualization version   GIF version

Theorem ssbnd 35873
Description: A subset of a metric space is bounded iff it is contained in a ball around 𝑃, for any 𝑃 in the larger space. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypothesis
Ref Expression
ssbnd.2 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
ssbnd ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → (𝑁 ∈ (Bnd‘𝑌) ↔ ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
Distinct variable groups:   𝑀,𝑑   𝑁,𝑑   𝑃,𝑑   𝑋,𝑑   𝑌,𝑑

Proof of Theorem ssbnd
Dummy variables 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 10908 . . . . . . 7 0 ∈ ℝ
21ne0ii 4268 . . . . . 6 ℝ ≠ ∅
3 0ss 4327 . . . . . . . 8 ∅ ⊆ (𝑃(ball‘𝑀)𝑑)
4 sseq1 3942 . . . . . . . 8 (𝑌 = ∅ → (𝑌 ⊆ (𝑃(ball‘𝑀)𝑑) ↔ ∅ ⊆ (𝑃(ball‘𝑀)𝑑)))
53, 4mpbiri 257 . . . . . . 7 (𝑌 = ∅ → 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))
65ralrimivw 3108 . . . . . 6 (𝑌 = ∅ → ∀𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))
7 r19.2z 4422 . . . . . 6 ((ℝ ≠ ∅ ∧ ∀𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))
82, 6, 7sylancr 586 . . . . 5 (𝑌 = ∅ → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))
98a1i 11 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (Bnd‘𝑌)) → (𝑌 = ∅ → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
10 isbnd2 35868 . . . . . 6 ((𝑁 ∈ (Bnd‘𝑌) ∧ 𝑌 ≠ ∅) ↔ (𝑁 ∈ (∞Met‘𝑌) ∧ ∃𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)))
11 simplll 771 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑀 ∈ (Met‘𝑋))
12 ssbnd.2 . . . . . . . . . . . . . . . . . . . . 21 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
1312dmeqi 5802 . . . . . . . . . . . . . . . . . . . 20 dom 𝑁 = dom (𝑀 ↾ (𝑌 × 𝑌))
14 dmres 5902 . . . . . . . . . . . . . . . . . . . 20 dom (𝑀 ↾ (𝑌 × 𝑌)) = ((𝑌 × 𝑌) ∩ dom 𝑀)
1513, 14eqtri 2766 . . . . . . . . . . . . . . . . . . 19 dom 𝑁 = ((𝑌 × 𝑌) ∩ dom 𝑀)
16 xmetf 23390 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (∞Met‘𝑌) → 𝑁:(𝑌 × 𝑌)⟶ℝ*)
1716fdmd 6595 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (∞Met‘𝑌) → dom 𝑁 = (𝑌 × 𝑌))
1815, 17eqtr3id 2793 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (∞Met‘𝑌) → ((𝑌 × 𝑌) ∩ dom 𝑀) = (𝑌 × 𝑌))
19 df-ss 3900 . . . . . . . . . . . . . . . . . 18 ((𝑌 × 𝑌) ⊆ dom 𝑀 ↔ ((𝑌 × 𝑌) ∩ dom 𝑀) = (𝑌 × 𝑌))
2018, 19sylibr 233 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (∞Met‘𝑌) → (𝑌 × 𝑌) ⊆ dom 𝑀)
2120ad2antlr 723 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑌 × 𝑌) ⊆ dom 𝑀)
22 metf 23391 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
2322fdmd 6595 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (Met‘𝑋) → dom 𝑀 = (𝑋 × 𝑋))
2423ad3antrrr 726 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → dom 𝑀 = (𝑋 × 𝑋))
2521, 24sseqtrd 3957 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
26 dmss 5800 . . . . . . . . . . . . . . 15 ((𝑌 × 𝑌) ⊆ (𝑋 × 𝑋) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋))
2725, 26syl 17 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋))
28 dmxpid 5828 . . . . . . . . . . . . . 14 dom (𝑌 × 𝑌) = 𝑌
29 dmxpid 5828 . . . . . . . . . . . . . 14 dom (𝑋 × 𝑋) = 𝑋
3027, 28, 293sstr3g 3961 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑌𝑋)
31 simprl 767 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑦𝑌)
3230, 31sseldd 3918 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑦𝑋)
33 simpllr 772 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑃𝑋)
34 metcl 23393 . . . . . . . . . . . 12 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋𝑃𝑋) → (𝑦𝑀𝑃) ∈ ℝ)
3511, 32, 33, 34syl3anc 1369 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦𝑀𝑃) ∈ ℝ)
36 rpre 12667 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
3736ad2antll 725 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ)
3835, 37readdcld 10935 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → ((𝑦𝑀𝑃) + 𝑟) ∈ ℝ)
39 metxmet 23395 . . . . . . . . . . . . 13 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
4011, 39syl 17 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑀 ∈ (∞Met‘𝑋))
4132, 31elind 4124 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑦 ∈ (𝑋𝑌))
42 rpxr 12668 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
4342ad2antll 725 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ*)
4412blres 23492 . . . . . . . . . . . 12 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ (𝑋𝑌) ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝑁)𝑟) = ((𝑦(ball‘𝑀)𝑟) ∩ 𝑌))
4540, 41, 43, 44syl3anc 1369 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦(ball‘𝑁)𝑟) = ((𝑦(ball‘𝑀)𝑟) ∩ 𝑌))
46 inss1 4159 . . . . . . . . . . . 12 ((𝑦(ball‘𝑀)𝑟) ∩ 𝑌) ⊆ (𝑦(ball‘𝑀)𝑟)
4735leidd 11471 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦𝑀𝑃) ≤ (𝑦𝑀𝑃))
4835recnd 10934 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦𝑀𝑃) ∈ ℂ)
4937recnd 10934 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → 𝑟 ∈ ℂ)
5048, 49pncand 11263 . . . . . . . . . . . . . 14 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (((𝑦𝑀𝑃) + 𝑟) − 𝑟) = (𝑦𝑀𝑃))
5147, 50breqtrrd 5098 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦𝑀𝑃) ≤ (((𝑦𝑀𝑃) + 𝑟) − 𝑟))
52 blss2 23465 . . . . . . . . . . . . 13 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋𝑃𝑋) ∧ (𝑟 ∈ ℝ ∧ ((𝑦𝑀𝑃) + 𝑟) ∈ ℝ ∧ (𝑦𝑀𝑃) ≤ (((𝑦𝑀𝑃) + 𝑟) − 𝑟))) → (𝑦(ball‘𝑀)𝑟) ⊆ (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟)))
5340, 32, 33, 37, 38, 51, 52syl33anc 1383 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦(ball‘𝑀)𝑟) ⊆ (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟)))
5446, 53sstrid 3928 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → ((𝑦(ball‘𝑀)𝑟) ∩ 𝑌) ⊆ (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟)))
5545, 54eqsstrd 3955 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟)))
56 oveq2 7263 . . . . . . . . . . . 12 (𝑑 = ((𝑦𝑀𝑃) + 𝑟) → (𝑃(ball‘𝑀)𝑑) = (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟)))
5756sseq2d 3949 . . . . . . . . . . 11 (𝑑 = ((𝑦𝑀𝑃) + 𝑟) → ((𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)𝑑) ↔ (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟))))
5857rspcev 3552 . . . . . . . . . 10 ((((𝑦𝑀𝑃) + 𝑟) ∈ ℝ ∧ (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)((𝑦𝑀𝑃) + 𝑟))) → ∃𝑑 ∈ ℝ (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)𝑑))
5938, 55, 58syl2anc 583 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → ∃𝑑 ∈ ℝ (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)𝑑))
60 sseq1 3942 . . . . . . . . . 10 (𝑌 = (𝑦(ball‘𝑁)𝑟) → (𝑌 ⊆ (𝑃(ball‘𝑀)𝑑) ↔ (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)𝑑)))
6160rexbidv 3225 . . . . . . . . 9 (𝑌 = (𝑦(ball‘𝑁)𝑟) → (∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑) ↔ ∃𝑑 ∈ ℝ (𝑦(ball‘𝑁)𝑟) ⊆ (𝑃(ball‘𝑀)𝑑)))
6259, 61syl5ibrcom 246 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝑦𝑌𝑟 ∈ ℝ+)) → (𝑌 = (𝑦(ball‘𝑁)𝑟) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
6362rexlimdvva 3222 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (∃𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
6463expimpd 453 . . . . . 6 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → ((𝑁 ∈ (∞Met‘𝑌) ∧ ∃𝑦𝑌𝑟 ∈ ℝ+ 𝑌 = (𝑦(ball‘𝑁)𝑟)) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
6510, 64syl5bi 241 . . . . 5 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → ((𝑁 ∈ (Bnd‘𝑌) ∧ 𝑌 ≠ ∅) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
6665expdimp 452 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (Bnd‘𝑌)) → (𝑌 ≠ ∅ → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
679, 66pm2.61dne 3030 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁 ∈ (Bnd‘𝑌)) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))
6867ex 412 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → (𝑁 ∈ (Bnd‘𝑌) → ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
69 simprr 769 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))
70 xpss12 5595 . . . . . . 7 ((𝑌 ⊆ (𝑃(ball‘𝑀)𝑑) ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)) → (𝑌 × 𝑌) ⊆ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑)))
7169, 69, 70syl2anc 583 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → (𝑌 × 𝑌) ⊆ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑)))
7271resabs1d 5911 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → ((𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ↾ (𝑌 × 𝑌)) = (𝑀 ↾ (𝑌 × 𝑌)))
7372, 12eqtr4di 2797 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → ((𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ↾ (𝑌 × 𝑌)) = 𝑁)
74 blbnd 35872 . . . . . . . 8 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑑 ∈ ℝ) → (𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ∈ (Bnd‘(𝑃(ball‘𝑀)𝑑)))
7539, 74syl3an1 1161 . . . . . . 7 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑑 ∈ ℝ) → (𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ∈ (Bnd‘(𝑃(ball‘𝑀)𝑑)))
76753expa 1116 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑑 ∈ ℝ) → (𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ∈ (Bnd‘(𝑃(ball‘𝑀)𝑑)))
7776adantrr 713 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → (𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ∈ (Bnd‘(𝑃(ball‘𝑀)𝑑)))
78 bndss 35871 . . . . 5 (((𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ∈ (Bnd‘(𝑃(ball‘𝑀)𝑑)) ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)) → ((𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ↾ (𝑌 × 𝑌)) ∈ (Bnd‘𝑌))
7977, 69, 78syl2anc 583 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → ((𝑀 ↾ ((𝑃(ball‘𝑀)𝑑) × (𝑃(ball‘𝑀)𝑑))) ↾ (𝑌 × 𝑌)) ∈ (Bnd‘𝑌))
8073, 79eqeltrrd 2840 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑑 ∈ ℝ ∧ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) → 𝑁 ∈ (Bnd‘𝑌))
8180rexlimdvaa 3213 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → (∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑) → 𝑁 ∈ (Bnd‘𝑌)))
8268, 81impbid 211 1 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → (𝑁 ∈ (Bnd‘𝑌) ↔ ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cin 3882  wss 3883  c0 4253   class class class wbr 5070   × cxp 5578  dom cdm 5580  cres 5582  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802   + caddc 10805  *cxr 10939  cle 10941  cmin 11135  +crp 12659  ∞Metcxmet 20495  Metcmet 20496  ballcbl 20497  Bndcbnd 35852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-ec 8458  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-bnd 35864
This theorem is referenced by:  prdsbnd2  35880  cntotbnd  35881
  Copyright terms: Public domain W3C validator