Proof of Theorem hmeontr
Step | Hyp | Ref
| Expression |
1 | | hmeocn 22819 |
. . . . . 6
⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
2 | 1 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
3 | | imassrn 5969 |
. . . . . 6
⊢ (𝐹 “ 𝐴) ⊆ ran 𝐹 |
4 | | hmeoopn.1 |
. . . . . . . . 9
⊢ 𝑋 = ∪
𝐽 |
5 | | eqid 2738 |
. . . . . . . . 9
⊢ ∪ 𝐾 =
∪ 𝐾 |
6 | 4, 5 | hmeof1o 22823 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋–1-1-onto→∪ 𝐾) |
7 | 6 | adantr 480 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐹:𝑋–1-1-onto→∪ 𝐾) |
8 | | f1ofo 6707 |
. . . . . . 7
⊢ (𝐹:𝑋–1-1-onto→∪ 𝐾
→ 𝐹:𝑋–onto→∪ 𝐾) |
9 | | forn 6675 |
. . . . . . 7
⊢ (𝐹:𝑋–onto→∪ 𝐾 → ran 𝐹 = ∪ 𝐾) |
10 | 7, 8, 9 | 3syl 18 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ran 𝐹 = ∪ 𝐾) |
11 | 3, 10 | sseqtrid 3969 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 “ 𝐴) ⊆ ∪ 𝐾) |
12 | 5 | cnntri 22330 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹 “ 𝐴) ⊆ ∪ 𝐾) → (◡𝐹 “ ((int‘𝐾)‘(𝐹 “ 𝐴))) ⊆ ((int‘𝐽)‘(◡𝐹 “ (𝐹 “ 𝐴)))) |
13 | 2, 11, 12 | syl2anc 583 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (◡𝐹 “ ((int‘𝐾)‘(𝐹 “ 𝐴))) ⊆ ((int‘𝐽)‘(◡𝐹 “ (𝐹 “ 𝐴)))) |
14 | | f1of1 6699 |
. . . . . . 7
⊢ (𝐹:𝑋–1-1-onto→∪ 𝐾
→ 𝐹:𝑋–1-1→∪ 𝐾) |
15 | 7, 14 | syl 17 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐹:𝑋–1-1→∪ 𝐾) |
16 | | f1imacnv 6716 |
. . . . . 6
⊢ ((𝐹:𝑋–1-1→∪ 𝐾 ∧ 𝐴 ⊆ 𝑋) → (◡𝐹 “ (𝐹 “ 𝐴)) = 𝐴) |
17 | 15, 16 | sylancom 587 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (◡𝐹 “ (𝐹 “ 𝐴)) = 𝐴) |
18 | 17 | fveq2d 6760 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘(◡𝐹 “ (𝐹 “ 𝐴))) = ((int‘𝐽)‘𝐴)) |
19 | 13, 18 | sseqtrd 3957 |
. . 3
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (◡𝐹 “ ((int‘𝐾)‘(𝐹 “ 𝐴))) ⊆ ((int‘𝐽)‘𝐴)) |
20 | | f1ofun 6702 |
. . . . 5
⊢ (𝐹:𝑋–1-1-onto→∪ 𝐾
→ Fun 𝐹) |
21 | 7, 20 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → Fun 𝐹) |
22 | | cntop2 22300 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
23 | 2, 22 | syl 17 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → 𝐾 ∈ Top) |
24 | 5 | ntrss3 22119 |
. . . . . 6
⊢ ((𝐾 ∈ Top ∧ (𝐹 “ 𝐴) ⊆ ∪ 𝐾) → ((int‘𝐾)‘(𝐹 “ 𝐴)) ⊆ ∪
𝐾) |
25 | 23, 11, 24 | syl2anc 583 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐾)‘(𝐹 “ 𝐴)) ⊆ ∪
𝐾) |
26 | 25, 10 | sseqtrrd 3958 |
. . . 4
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐾)‘(𝐹 “ 𝐴)) ⊆ ran 𝐹) |
27 | | funimass1 6500 |
. . . 4
⊢ ((Fun
𝐹 ∧ ((int‘𝐾)‘(𝐹 “ 𝐴)) ⊆ ran 𝐹) → ((◡𝐹 “ ((int‘𝐾)‘(𝐹 “ 𝐴))) ⊆ ((int‘𝐽)‘𝐴) → ((int‘𝐾)‘(𝐹 “ 𝐴)) ⊆ (𝐹 “ ((int‘𝐽)‘𝐴)))) |
28 | 21, 26, 27 | syl2anc 583 |
. . 3
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((◡𝐹 “ ((int‘𝐾)‘(𝐹 “ 𝐴))) ⊆ ((int‘𝐽)‘𝐴) → ((int‘𝐾)‘(𝐹 “ 𝐴)) ⊆ (𝐹 “ ((int‘𝐽)‘𝐴)))) |
29 | 19, 28 | mpd 15 |
. 2
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐾)‘(𝐹 “ 𝐴)) ⊆ (𝐹 “ ((int‘𝐽)‘𝐴))) |
30 | | hmeocnvcn 22820 |
. . . 4
⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) |
31 | 4 | cnntri 22330 |
. . . 4
⊢ ((◡𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴 ⊆ 𝑋) → (◡◡𝐹 “ ((int‘𝐽)‘𝐴)) ⊆ ((int‘𝐾)‘(◡◡𝐹 “ 𝐴))) |
32 | 30, 31 | sylan 579 |
. . 3
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (◡◡𝐹 “ ((int‘𝐽)‘𝐴)) ⊆ ((int‘𝐾)‘(◡◡𝐹 “ 𝐴))) |
33 | | imacnvcnv 6098 |
. . 3
⊢ (◡◡𝐹 “ ((int‘𝐽)‘𝐴)) = (𝐹 “ ((int‘𝐽)‘𝐴)) |
34 | | imacnvcnv 6098 |
. . . 4
⊢ (◡◡𝐹 “ 𝐴) = (𝐹 “ 𝐴) |
35 | 34 | fveq2i 6759 |
. . 3
⊢
((int‘𝐾)‘(◡◡𝐹 “ 𝐴)) = ((int‘𝐾)‘(𝐹 “ 𝐴)) |
36 | 32, 33, 35 | 3sstr3g 3961 |
. 2
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 “ ((int‘𝐽)‘𝐴)) ⊆ ((int‘𝐾)‘(𝐹 “ 𝐴))) |
37 | 29, 36 | eqssd 3934 |
1
⊢ ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐾)‘(𝐹 “ 𝐴)) = (𝐹 “ ((int‘𝐽)‘𝐴))) |