MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeontr Structured version   Visualization version   GIF version

Theorem hmeontr 23684
Description: Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1 𝑋 = 𝐽
Assertion
Ref Expression
hmeontr ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐾)‘(𝐹𝐴)) = (𝐹 “ ((int‘𝐽)‘𝐴)))

Proof of Theorem hmeontr
StepHypRef Expression
1 hmeocn 23675 . . . . . 6 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
21adantr 480 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
3 imassrn 6019 . . . . . 6 (𝐹𝐴) ⊆ ran 𝐹
4 hmeoopn.1 . . . . . . . . 9 𝑋 = 𝐽
5 eqid 2731 . . . . . . . . 9 𝐾 = 𝐾
64, 5hmeof1o 23679 . . . . . . . 8 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto 𝐾)
76adantr 480 . . . . . . 7 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐹:𝑋1-1-onto 𝐾)
8 f1ofo 6770 . . . . . . 7 (𝐹:𝑋1-1-onto 𝐾𝐹:𝑋onto 𝐾)
9 forn 6738 . . . . . . 7 (𝐹:𝑋onto 𝐾 → ran 𝐹 = 𝐾)
107, 8, 93syl 18 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ran 𝐹 = 𝐾)
113, 10sseqtrid 3972 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹𝐴) ⊆ 𝐾)
125cnntri 23186 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹𝐴) ⊆ 𝐾) → (𝐹 “ ((int‘𝐾)‘(𝐹𝐴))) ⊆ ((int‘𝐽)‘(𝐹 “ (𝐹𝐴))))
132, 11, 12syl2anc 584 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ ((int‘𝐾)‘(𝐹𝐴))) ⊆ ((int‘𝐽)‘(𝐹 “ (𝐹𝐴))))
14 f1of1 6762 . . . . . . 7 (𝐹:𝑋1-1-onto 𝐾𝐹:𝑋1-1 𝐾)
157, 14syl 17 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐹:𝑋1-1 𝐾)
16 f1imacnv 6779 . . . . . 6 ((𝐹:𝑋1-1 𝐾𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
1715, 16sylancom 588 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
1817fveq2d 6826 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐽)‘(𝐹 “ (𝐹𝐴))) = ((int‘𝐽)‘𝐴))
1913, 18sseqtrd 3966 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ ((int‘𝐾)‘(𝐹𝐴))) ⊆ ((int‘𝐽)‘𝐴))
20 f1ofun 6765 . . . . 5 (𝐹:𝑋1-1-onto 𝐾 → Fun 𝐹)
217, 20syl 17 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → Fun 𝐹)
22 cntop2 23156 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
232, 22syl 17 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐾 ∈ Top)
245ntrss3 22975 . . . . . 6 ((𝐾 ∈ Top ∧ (𝐹𝐴) ⊆ 𝐾) → ((int‘𝐾)‘(𝐹𝐴)) ⊆ 𝐾)
2523, 11, 24syl2anc 584 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐾)‘(𝐹𝐴)) ⊆ 𝐾)
2625, 10sseqtrrd 3967 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐾)‘(𝐹𝐴)) ⊆ ran 𝐹)
27 funimass1 6563 . . . 4 ((Fun 𝐹 ∧ ((int‘𝐾)‘(𝐹𝐴)) ⊆ ran 𝐹) → ((𝐹 “ ((int‘𝐾)‘(𝐹𝐴))) ⊆ ((int‘𝐽)‘𝐴) → ((int‘𝐾)‘(𝐹𝐴)) ⊆ (𝐹 “ ((int‘𝐽)‘𝐴))))
2821, 26, 27syl2anc 584 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹 “ ((int‘𝐾)‘(𝐹𝐴))) ⊆ ((int‘𝐽)‘𝐴) → ((int‘𝐾)‘(𝐹𝐴)) ⊆ (𝐹 “ ((int‘𝐽)‘𝐴))))
2919, 28mpd 15 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐾)‘(𝐹𝐴)) ⊆ (𝐹 “ ((int‘𝐽)‘𝐴)))
30 hmeocnvcn 23676 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
314cnntri 23186 . . . 4 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴𝑋) → (𝐹 “ ((int‘𝐽)‘𝐴)) ⊆ ((int‘𝐾)‘(𝐹𝐴)))
3230, 31sylan 580 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ ((int‘𝐽)‘𝐴)) ⊆ ((int‘𝐾)‘(𝐹𝐴)))
33 imacnvcnv 6153 . . 3 (𝐹 “ ((int‘𝐽)‘𝐴)) = (𝐹 “ ((int‘𝐽)‘𝐴))
34 imacnvcnv 6153 . . . 4 (𝐹𝐴) = (𝐹𝐴)
3534fveq2i 6825 . . 3 ((int‘𝐾)‘(𝐹𝐴)) = ((int‘𝐾)‘(𝐹𝐴))
3632, 33, 353sstr3g 3982 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ ((int‘𝐽)‘𝐴)) ⊆ ((int‘𝐾)‘(𝐹𝐴)))
3729, 36eqssd 3947 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐾)‘(𝐹𝐴)) = (𝐹 “ ((int‘𝐽)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3897   cuni 4856  ccnv 5613  ran crn 5615  cima 5617  Fun wfun 6475  1-1wf1 6478  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Topctop 22808  intcnt 22932   Cn ccn 23139  Homeochmeo 23668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-top 22809  df-topon 22826  df-ntr 22935  df-cn 23142  df-hmeo 23670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator