MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeontr Structured version   Visualization version   GIF version

Theorem hmeontr 23798
Description: Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
hmeoopn.1 𝑋 = 𝐽
Assertion
Ref Expression
hmeontr ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐾)‘(𝐹𝐴)) = (𝐹 “ ((int‘𝐽)‘𝐴)))

Proof of Theorem hmeontr
StepHypRef Expression
1 hmeocn 23789 . . . . . 6 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
21adantr 480 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
3 imassrn 6100 . . . . . 6 (𝐹𝐴) ⊆ ran 𝐹
4 hmeoopn.1 . . . . . . . . 9 𝑋 = 𝐽
5 eqid 2740 . . . . . . . . 9 𝐾 = 𝐾
64, 5hmeof1o 23793 . . . . . . . 8 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝑋1-1-onto 𝐾)
76adantr 480 . . . . . . 7 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐹:𝑋1-1-onto 𝐾)
8 f1ofo 6869 . . . . . . 7 (𝐹:𝑋1-1-onto 𝐾𝐹:𝑋onto 𝐾)
9 forn 6837 . . . . . . 7 (𝐹:𝑋onto 𝐾 → ran 𝐹 = 𝐾)
107, 8, 93syl 18 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ran 𝐹 = 𝐾)
113, 10sseqtrid 4061 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹𝐴) ⊆ 𝐾)
125cnntri 23300 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹𝐴) ⊆ 𝐾) → (𝐹 “ ((int‘𝐾)‘(𝐹𝐴))) ⊆ ((int‘𝐽)‘(𝐹 “ (𝐹𝐴))))
132, 11, 12syl2anc 583 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ ((int‘𝐾)‘(𝐹𝐴))) ⊆ ((int‘𝐽)‘(𝐹 “ (𝐹𝐴))))
14 f1of1 6861 . . . . . . 7 (𝐹:𝑋1-1-onto 𝐾𝐹:𝑋1-1 𝐾)
157, 14syl 17 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐹:𝑋1-1 𝐾)
16 f1imacnv 6878 . . . . . 6 ((𝐹:𝑋1-1 𝐾𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
1715, 16sylancom 587 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
1817fveq2d 6924 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐽)‘(𝐹 “ (𝐹𝐴))) = ((int‘𝐽)‘𝐴))
1913, 18sseqtrd 4049 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ ((int‘𝐾)‘(𝐹𝐴))) ⊆ ((int‘𝐽)‘𝐴))
20 f1ofun 6864 . . . . 5 (𝐹:𝑋1-1-onto 𝐾 → Fun 𝐹)
217, 20syl 17 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → Fun 𝐹)
22 cntop2 23270 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
232, 22syl 17 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → 𝐾 ∈ Top)
245ntrss3 23089 . . . . . 6 ((𝐾 ∈ Top ∧ (𝐹𝐴) ⊆ 𝐾) → ((int‘𝐾)‘(𝐹𝐴)) ⊆ 𝐾)
2523, 11, 24syl2anc 583 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐾)‘(𝐹𝐴)) ⊆ 𝐾)
2625, 10sseqtrrd 4050 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐾)‘(𝐹𝐴)) ⊆ ran 𝐹)
27 funimass1 6660 . . . 4 ((Fun 𝐹 ∧ ((int‘𝐾)‘(𝐹𝐴)) ⊆ ran 𝐹) → ((𝐹 “ ((int‘𝐾)‘(𝐹𝐴))) ⊆ ((int‘𝐽)‘𝐴) → ((int‘𝐾)‘(𝐹𝐴)) ⊆ (𝐹 “ ((int‘𝐽)‘𝐴))))
2821, 26, 27syl2anc 583 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((𝐹 “ ((int‘𝐾)‘(𝐹𝐴))) ⊆ ((int‘𝐽)‘𝐴) → ((int‘𝐾)‘(𝐹𝐴)) ⊆ (𝐹 “ ((int‘𝐽)‘𝐴))))
2919, 28mpd 15 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐾)‘(𝐹𝐴)) ⊆ (𝐹 “ ((int‘𝐽)‘𝐴)))
30 hmeocnvcn 23790 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
314cnntri 23300 . . . 4 ((𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐴𝑋) → (𝐹 “ ((int‘𝐽)‘𝐴)) ⊆ ((int‘𝐾)‘(𝐹𝐴)))
3230, 31sylan 579 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ ((int‘𝐽)‘𝐴)) ⊆ ((int‘𝐾)‘(𝐹𝐴)))
33 imacnvcnv 6237 . . 3 (𝐹 “ ((int‘𝐽)‘𝐴)) = (𝐹 “ ((int‘𝐽)‘𝐴))
34 imacnvcnv 6237 . . . 4 (𝐹𝐴) = (𝐹𝐴)
3534fveq2i 6923 . . 3 ((int‘𝐾)‘(𝐹𝐴)) = ((int‘𝐾)‘(𝐹𝐴))
3632, 33, 353sstr3g 4053 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → (𝐹 “ ((int‘𝐽)‘𝐴)) ⊆ ((int‘𝐾)‘(𝐹𝐴)))
3729, 36eqssd 4026 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐴𝑋) → ((int‘𝐾)‘(𝐹𝐴)) = (𝐹 “ ((int‘𝐽)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wss 3976   cuni 4931  ccnv 5699  ran crn 5701  cima 5703  Fun wfun 6567  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Topctop 22920  intcnt 23046   Cn ccn 23253  Homeochmeo 23782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-top 22921  df-topon 22938  df-ntr 23049  df-cn 23256  df-hmeo 23784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator