Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  glb0N Structured version   Visualization version   GIF version

Theorem glb0N 37207
Description: The greatest lower bound of the empty set is the unit element. (Contributed by NM, 5-Dec-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
glb0.g 𝐺 = (glb‘𝐾)
glb0.u 1 = (1.‘𝐾)
Assertion
Ref Expression
glb0N (𝐾 ∈ OP → (𝐺‘∅) = 1 )

Proof of Theorem glb0N
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2738 . . 3 (le‘𝐾) = (le‘𝐾)
3 glb0.g . . 3 𝐺 = (glb‘𝐾)
4 biid 260 . . 3 ((∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
5 id 22 . . 3 (𝐾 ∈ OP → 𝐾 ∈ OP)
6 0ss 4330 . . . 4 ∅ ⊆ (Base‘𝐾)
76a1i 11 . . 3 (𝐾 ∈ OP → ∅ ⊆ (Base‘𝐾))
81, 2, 3, 4, 5, 7glbval 18087 . 2 (𝐾 ∈ OP → (𝐺‘∅) = (𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))))
9 glb0.u . . . 4 1 = (1.‘𝐾)
101, 9op1cl 37199 . . 3 (𝐾 ∈ OP → 1 ∈ (Base‘𝐾))
11 ral0 4443 . . . . . . 7 𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦
1211a1bi 363 . . . . . 6 (𝑧(le‘𝐾)𝑥 ↔ (∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))
1312ralbii 3092 . . . . 5 (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥 ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))
14 ral0 4443 . . . . . 6 𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦
1514biantrur 531 . . . . 5 (∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥) ↔ (∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
1613, 15bitri 274 . . . 4 (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥 ↔ (∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
1710adantr 481 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → 1 ∈ (Base‘𝐾))
18 breq1 5077 . . . . . . . 8 (𝑧 = 1 → (𝑧(le‘𝐾)𝑥1 (le‘𝐾)𝑥))
1918rspcv 3557 . . . . . . 7 ( 1 ∈ (Base‘𝐾) → (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥1 (le‘𝐾)𝑥))
2017, 19syl 17 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥1 (le‘𝐾)𝑥))
211, 2, 9op1le 37206 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → ( 1 (le‘𝐾)𝑥𝑥 = 1 ))
2220, 21sylibd 238 . . . . 5 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥𝑥 = 1 ))
231, 2, 9ople1 37205 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑧(le‘𝐾) 1 )
2423adantlr 712 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑧(le‘𝐾) 1 )
2524ex 413 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑧 ∈ (Base‘𝐾) → 𝑧(le‘𝐾) 1 ))
26 breq2 5078 . . . . . . . . 9 (𝑥 = 1 → (𝑧(le‘𝐾)𝑥𝑧(le‘𝐾) 1 ))
2726biimprcd 249 . . . . . . . 8 (𝑧(le‘𝐾) 1 → (𝑥 = 1𝑧(le‘𝐾)𝑥))
2825, 27syl6 35 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑧 ∈ (Base‘𝐾) → (𝑥 = 1𝑧(le‘𝐾)𝑥)))
2928com23 86 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = 1 → (𝑧 ∈ (Base‘𝐾) → 𝑧(le‘𝐾)𝑥)))
3029ralrimdv 3105 . . . . 5 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = 1 → ∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥))
3122, 30impbid 211 . . . 4 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥𝑥 = 1 ))
3216, 31bitr3id 285 . . 3 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → ((∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) ↔ 𝑥 = 1 ))
3310, 32riota5 7262 . 2 (𝐾 ∈ OP → (𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))) = 1 )
348, 33eqtrd 2778 1 (𝐾 ∈ OP → (𝐺‘∅) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887  c0 4256   class class class wbr 5074  cfv 6433  crio 7231  Basecbs 16912  lecple 16969  glbcglb 18028  1.cp1 18142  OPcops 37186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-proset 18013  df-poset 18031  df-lub 18064  df-glb 18065  df-p1 18144  df-oposet 37190
This theorem is referenced by:  pmapglb2N  37785  pmapglb2xN  37786
  Copyright terms: Public domain W3C validator