Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  glb0N Structured version   Visualization version   GIF version

Theorem glb0N 36489
Description: The greatest lower bound of the empty set is the unit element. (Contributed by NM, 5-Dec-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
glb0.g 𝐺 = (glb‘𝐾)
glb0.u 1 = (1.‘𝐾)
Assertion
Ref Expression
glb0N (𝐾 ∈ OP → (𝐺‘∅) = 1 )

Proof of Theorem glb0N
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2798 . . 3 (le‘𝐾) = (le‘𝐾)
3 glb0.g . . 3 𝐺 = (glb‘𝐾)
4 biid 264 . . 3 ((∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
5 id 22 . . 3 (𝐾 ∈ OP → 𝐾 ∈ OP)
6 0ss 4304 . . . 4 ∅ ⊆ (Base‘𝐾)
76a1i 11 . . 3 (𝐾 ∈ OP → ∅ ⊆ (Base‘𝐾))
81, 2, 3, 4, 5, 7glbval 17599 . 2 (𝐾 ∈ OP → (𝐺‘∅) = (𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))))
9 glb0.u . . . 4 1 = (1.‘𝐾)
101, 9op1cl 36481 . . 3 (𝐾 ∈ OP → 1 ∈ (Base‘𝐾))
11 ral0 4414 . . . . . . 7 𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦
1211a1bi 366 . . . . . 6 (𝑧(le‘𝐾)𝑥 ↔ (∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))
1312ralbii 3133 . . . . 5 (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥 ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))
14 ral0 4414 . . . . . 6 𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦
1514biantrur 534 . . . . 5 (∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥) ↔ (∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
1613, 15bitri 278 . . . 4 (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥 ↔ (∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
1710adantr 484 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → 1 ∈ (Base‘𝐾))
18 breq1 5033 . . . . . . . 8 (𝑧 = 1 → (𝑧(le‘𝐾)𝑥1 (le‘𝐾)𝑥))
1918rspcv 3566 . . . . . . 7 ( 1 ∈ (Base‘𝐾) → (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥1 (le‘𝐾)𝑥))
2017, 19syl 17 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥1 (le‘𝐾)𝑥))
211, 2, 9op1le 36488 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → ( 1 (le‘𝐾)𝑥𝑥 = 1 ))
2220, 21sylibd 242 . . . . 5 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥𝑥 = 1 ))
231, 2, 9ople1 36487 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑧(le‘𝐾) 1 )
2423adantlr 714 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑧(le‘𝐾) 1 )
2524ex 416 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑧 ∈ (Base‘𝐾) → 𝑧(le‘𝐾) 1 ))
26 breq2 5034 . . . . . . . . 9 (𝑥 = 1 → (𝑧(le‘𝐾)𝑥𝑧(le‘𝐾) 1 ))
2726biimprcd 253 . . . . . . . 8 (𝑧(le‘𝐾) 1 → (𝑥 = 1𝑧(le‘𝐾)𝑥))
2825, 27syl6 35 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑧 ∈ (Base‘𝐾) → (𝑥 = 1𝑧(le‘𝐾)𝑥)))
2928com23 86 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = 1 → (𝑧 ∈ (Base‘𝐾) → 𝑧(le‘𝐾)𝑥)))
3029ralrimdv 3153 . . . . 5 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = 1 → ∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥))
3122, 30impbid 215 . . . 4 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥𝑥 = 1 ))
3216, 31bitr3id 288 . . 3 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → ((∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) ↔ 𝑥 = 1 ))
3310, 32riota5 7122 . 2 (𝐾 ∈ OP → (𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))) = 1 )
348, 33eqtrd 2833 1 (𝐾 ∈ OP → (𝐺‘∅) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  wss 3881  c0 4243   class class class wbr 5030  cfv 6324  crio 7092  Basecbs 16475  lecple 16564  glbcglb 17545  1.cp1 17640  OPcops 36468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-proset 17530  df-poset 17548  df-lub 17576  df-glb 17577  df-p1 17642  df-oposet 36472
This theorem is referenced by:  pmapglb2N  37067  pmapglb2xN  37068
  Copyright terms: Public domain W3C validator