Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  glb0N Structured version   Visualization version   GIF version

Theorem glb0N 39186
Description: The greatest lower bound of the empty set is the unity element. (Contributed by NM, 5-Dec-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
glb0.g 𝐺 = (glb‘𝐾)
glb0.u 1 = (1.‘𝐾)
Assertion
Ref Expression
glb0N (𝐾 ∈ OP → (𝐺‘∅) = 1 )

Proof of Theorem glb0N
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2729 . . 3 (le‘𝐾) = (le‘𝐾)
3 glb0.g . . 3 𝐺 = (glb‘𝐾)
4 biid 261 . . 3 ((∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
5 id 22 . . 3 (𝐾 ∈ OP → 𝐾 ∈ OP)
6 0ss 4363 . . . 4 ∅ ⊆ (Base‘𝐾)
76a1i 11 . . 3 (𝐾 ∈ OP → ∅ ⊆ (Base‘𝐾))
81, 2, 3, 4, 5, 7glbval 18328 . 2 (𝐾 ∈ OP → (𝐺‘∅) = (𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))))
9 glb0.u . . . 4 1 = (1.‘𝐾)
101, 9op1cl 39178 . . 3 (𝐾 ∈ OP → 1 ∈ (Base‘𝐾))
11 ral0 4476 . . . . . . 7 𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦
1211a1bi 362 . . . . . 6 (𝑧(le‘𝐾)𝑥 ↔ (∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))
1312ralbii 3075 . . . . 5 (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥 ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))
14 ral0 4476 . . . . . 6 𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦
1514biantrur 530 . . . . 5 (∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥) ↔ (∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
1613, 15bitri 275 . . . 4 (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥 ↔ (∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
1710adantr 480 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → 1 ∈ (Base‘𝐾))
18 breq1 5110 . . . . . . . 8 (𝑧 = 1 → (𝑧(le‘𝐾)𝑥1 (le‘𝐾)𝑥))
1918rspcv 3584 . . . . . . 7 ( 1 ∈ (Base‘𝐾) → (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥1 (le‘𝐾)𝑥))
2017, 19syl 17 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥1 (le‘𝐾)𝑥))
211, 2, 9op1le 39185 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → ( 1 (le‘𝐾)𝑥𝑥 = 1 ))
2220, 21sylibd 239 . . . . 5 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥𝑥 = 1 ))
231, 2, 9ople1 39184 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑧(le‘𝐾) 1 )
2423adantlr 715 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑧(le‘𝐾) 1 )
2524ex 412 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑧 ∈ (Base‘𝐾) → 𝑧(le‘𝐾) 1 ))
26 breq2 5111 . . . . . . . . 9 (𝑥 = 1 → (𝑧(le‘𝐾)𝑥𝑧(le‘𝐾) 1 ))
2726biimprcd 250 . . . . . . . 8 (𝑧(le‘𝐾) 1 → (𝑥 = 1𝑧(le‘𝐾)𝑥))
2825, 27syl6 35 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑧 ∈ (Base‘𝐾) → (𝑥 = 1𝑧(le‘𝐾)𝑥)))
2928com23 86 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = 1 → (𝑧 ∈ (Base‘𝐾) → 𝑧(le‘𝐾)𝑥)))
3029ralrimdv 3131 . . . . 5 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = 1 → ∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥))
3122, 30impbid 212 . . . 4 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥𝑥 = 1 ))
3216, 31bitr3id 285 . . 3 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → ((∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) ↔ 𝑥 = 1 ))
3310, 32riota5 7373 . 2 (𝐾 ∈ OP → (𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))) = 1 )
348, 33eqtrd 2764 1 (𝐾 ∈ OP → (𝐺‘∅) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3914  c0 4296   class class class wbr 5107  cfv 6511  crio 7343  Basecbs 17179  lecple 17227  glbcglb 18271  1.cp1 18383  OPcops 39165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-proset 18255  df-poset 18274  df-lub 18305  df-glb 18306  df-p1 18385  df-oposet 39169
This theorem is referenced by:  pmapglb2N  39765  pmapglb2xN  39766
  Copyright terms: Public domain W3C validator