MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpsub Structured version   Visualization version   GIF version

Theorem cmpsub 22459
Description: Two equivalent ways of describing a compact subset of a topological space. Inspired by Sue E. Goodman's Beginning Topology. (Contributed by Jeff Hankins, 22-Jun-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
cmpsub.1 𝑋 = 𝐽
Assertion
Ref Expression
cmpsub ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
Distinct variable groups:   𝑐,𝑑,𝐽   𝑆,𝑐,𝑑   𝑋,𝑐,𝑑

Proof of Theorem cmpsub
Dummy variables 𝑥 𝑦 𝑓 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (𝐽t 𝑆) = (𝐽t 𝑆)
21iscmp 22447 . . 3 ((𝐽t 𝑆) ∈ Comp ↔ ((𝐽t 𝑆) ∈ Top ∧ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)))
3 id 22 . . . . . 6 (𝑆𝑋𝑆𝑋)
4 cmpsub.1 . . . . . . 7 𝑋 = 𝐽
54topopn 21963 . . . . . 6 (𝐽 ∈ Top → 𝑋𝐽)
6 ssexg 5242 . . . . . 6 ((𝑆𝑋𝑋𝐽) → 𝑆 ∈ V)
73, 5, 6syl2anr 596 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ V)
8 resttop 22219 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → (𝐽t 𝑆) ∈ Top)
97, 8syldan 590 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐽t 𝑆) ∈ Top)
10 ibar 528 . . . . 5 ((𝐽t 𝑆) ∈ Top → (∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡) ↔ ((𝐽t 𝑆) ∈ Top ∧ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡))))
1110bicomd 222 . . . 4 ((𝐽t 𝑆) ∈ Top → (((𝐽t 𝑆) ∈ Top ∧ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)) ↔ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)))
129, 11syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((𝐽t 𝑆) ∈ Top ∧ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)) ↔ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)))
132, 12syl5bb 282 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)))
14 vex 3426 . . . . . . . . . . 11 𝑡 ∈ V
15 eqeq1 2742 . . . . . . . . . . . 12 (𝑥 = 𝑡 → (𝑥 = (𝑦𝑆) ↔ 𝑡 = (𝑦𝑆)))
1615rexbidv 3225 . . . . . . . . . . 11 (𝑥 = 𝑡 → (∃𝑦𝑐 𝑥 = (𝑦𝑆) ↔ ∃𝑦𝑐 𝑡 = (𝑦𝑆)))
1714, 16elab 3602 . . . . . . . . . 10 (𝑡 ∈ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ↔ ∃𝑦𝑐 𝑡 = (𝑦𝑆))
18 velpw 4535 . . . . . . . . . . . . . 14 (𝑐 ∈ 𝒫 𝐽𝑐𝐽)
19 ssel2 3912 . . . . . . . . . . . . . . . 16 ((𝑐𝐽𝑦𝑐) → 𝑦𝐽)
20 ineq1 4136 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑦 → (𝑑𝑆) = (𝑦𝑆))
2120rspceeqv 3567 . . . . . . . . . . . . . . . . 17 ((𝑦𝐽𝑡 = (𝑦𝑆)) → ∃𝑑𝐽 𝑡 = (𝑑𝑆))
2221ex 412 . . . . . . . . . . . . . . . 16 (𝑦𝐽 → (𝑡 = (𝑦𝑆) → ∃𝑑𝐽 𝑡 = (𝑑𝑆)))
2319, 22syl 17 . . . . . . . . . . . . . . 15 ((𝑐𝐽𝑦𝑐) → (𝑡 = (𝑦𝑆) → ∃𝑑𝐽 𝑡 = (𝑑𝑆)))
2423ex 412 . . . . . . . . . . . . . 14 (𝑐𝐽 → (𝑦𝑐 → (𝑡 = (𝑦𝑆) → ∃𝑑𝐽 𝑡 = (𝑑𝑆))))
2518, 24sylbi 216 . . . . . . . . . . . . 13 (𝑐 ∈ 𝒫 𝐽 → (𝑦𝑐 → (𝑡 = (𝑦𝑆) → ∃𝑑𝐽 𝑡 = (𝑑𝑆))))
2625adantl 481 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (𝑦𝑐 → (𝑡 = (𝑦𝑆) → ∃𝑑𝐽 𝑡 = (𝑑𝑆))))
2726rexlimdv 3211 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (∃𝑦𝑐 𝑡 = (𝑦𝑆) → ∃𝑑𝐽 𝑡 = (𝑑𝑆)))
28 simpll 763 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → 𝐽 ∈ Top)
294sseq2i 3946 . . . . . . . . . . . . . 14 (𝑆𝑋𝑆 𝐽)
30 uniexg 7571 . . . . . . . . . . . . . . . 16 (𝐽 ∈ Top → 𝐽 ∈ V)
31 ssexg 5242 . . . . . . . . . . . . . . . 16 ((𝑆 𝐽 𝐽 ∈ V) → 𝑆 ∈ V)
3230, 31sylan2 592 . . . . . . . . . . . . . . 15 ((𝑆 𝐽𝐽 ∈ Top) → 𝑆 ∈ V)
3332ancoms 458 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ∈ V)
3429, 33sylan2b 593 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ V)
3534adantr 480 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → 𝑆 ∈ V)
36 elrest 17055 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → (𝑡 ∈ (𝐽t 𝑆) ↔ ∃𝑑𝐽 𝑡 = (𝑑𝑆)))
3728, 35, 36syl2anc 583 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (𝑡 ∈ (𝐽t 𝑆) ↔ ∃𝑑𝐽 𝑡 = (𝑑𝑆)))
3827, 37sylibrd 258 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (∃𝑦𝑐 𝑡 = (𝑦𝑆) → 𝑡 ∈ (𝐽t 𝑆)))
3917, 38syl5bi 241 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (𝑡 ∈ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → 𝑡 ∈ (𝐽t 𝑆)))
4039ssrdv 3923 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ⊆ (𝐽t 𝑆))
41 vex 3426 . . . . . . . . . 10 𝑐 ∈ V
4241abrexex 7778 . . . . . . . . 9 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∈ V
4342elpw 4534 . . . . . . . 8 ({𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∈ 𝒫 (𝐽t 𝑆) ↔ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ⊆ (𝐽t 𝑆))
4440, 43sylibr 233 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∈ 𝒫 (𝐽t 𝑆))
45 unieq 4847 . . . . . . . . . 10 (𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → 𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)})
4645eqeq2d 2749 . . . . . . . . 9 (𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ( (𝐽t 𝑆) = 𝑠 (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)}))
47 pweq 4546 . . . . . . . . . . 11 (𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → 𝒫 𝑠 = 𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)})
4847ineq1d 4142 . . . . . . . . . 10 (𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → (𝒫 𝑠 ∩ Fin) = (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin))
4948rexeqdv 3340 . . . . . . . . 9 (𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → (∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡 ↔ ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡))
5046, 49imbi12d 344 . . . . . . . 8 (𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → (( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡) ↔ ( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡)))
5150rspcva 3550 . . . . . . 7 (({𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∈ 𝒫 (𝐽t 𝑆) ∧ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)) → ( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡))
5244, 51sylan 579 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)) → ( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡))
5352ex 412 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡) → ( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡)))
544restuni 22221 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 = (𝐽t 𝑆))
5554ad2antrr 722 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → 𝑆 = (𝐽t 𝑆))
56 vex 3426 . . . . . . . . . . . . . 14 𝑦 ∈ V
5756inex1 5236 . . . . . . . . . . . . 13 (𝑦𝑆) ∈ V
5857dfiun2 4959 . . . . . . . . . . . 12 𝑦𝑐 (𝑦𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)}
59 incom 4131 . . . . . . . . . . . . . 14 (𝑦𝑆) = (𝑆𝑦)
6059a1i 11 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ 𝑦𝑐) → (𝑦𝑆) = (𝑆𝑦))
6160iuneq2dv 4945 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → 𝑦𝑐 (𝑦𝑆) = 𝑦𝑐 (𝑆𝑦))
6258, 61eqtr3id 2793 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} = 𝑦𝑐 (𝑆𝑦))
63 iunin2 4996 . . . . . . . . . . . 12 𝑦𝑐 (𝑆𝑦) = (𝑆 𝑦𝑐 𝑦)
64 uniiun 4984 . . . . . . . . . . . . . . . 16 𝑐 = 𝑦𝑐 𝑦
6564eqcomi 2747 . . . . . . . . . . . . . . 15 𝑦𝑐 𝑦 = 𝑐
6665a1i 11 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → 𝑦𝑐 𝑦 = 𝑐)
6766ineq2d 4143 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (𝑆 𝑦𝑐 𝑦) = (𝑆 𝑐))
68 incom 4131 . . . . . . . . . . . . . . 15 (𝑆 𝑐) = ( 𝑐𝑆)
69 sseqin2 4146 . . . . . . . . . . . . . . . 16 (𝑆 𝑐 ↔ ( 𝑐𝑆) = 𝑆)
7069biimpi 215 . . . . . . . . . . . . . . 15 (𝑆 𝑐 → ( 𝑐𝑆) = 𝑆)
7168, 70eqtrid 2790 . . . . . . . . . . . . . 14 (𝑆 𝑐 → (𝑆 𝑐) = 𝑆)
7271adantl 481 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (𝑆 𝑐) = 𝑆)
7367, 72eqtrd 2778 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (𝑆 𝑦𝑐 𝑦) = 𝑆)
7463, 73eqtrid 2790 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → 𝑦𝑐 (𝑆𝑦) = 𝑆)
7562, 74eqtr2d 2779 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → 𝑆 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)})
7655, 75eqeq12d 2754 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (𝑆 = 𝑆 (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)}))
7755eqeq1d 2740 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (𝑆 = 𝑡 (𝐽t 𝑆) = 𝑡))
7877rexbidv 3225 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)𝑆 = 𝑡 ↔ ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡))
7976, 78imbi12d 344 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → ((𝑆 = 𝑆 → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)𝑆 = 𝑡) ↔ ( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡)))
80 eqid 2738 . . . . . . . . . 10 𝑆 = 𝑆
8180a1bi 362 . . . . . . . . 9 (∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)𝑆 = 𝑡 ↔ (𝑆 = 𝑆 → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)𝑆 = 𝑡))
82 elin 3899 . . . . . . . . . . . 12 (𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) ↔ (𝑡 ∈ 𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∧ 𝑡 ∈ Fin))
83 velpw 4535 . . . . . . . . . . . . . 14 (𝑡 ∈ 𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ↔ 𝑡 ⊆ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)})
84 dfss3 3905 . . . . . . . . . . . . . 14 (𝑡 ⊆ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ↔ ∀𝑠𝑡 𝑠 ∈ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)})
85 vex 3426 . . . . . . . . . . . . . . . 16 𝑠 ∈ V
86 eqeq1 2742 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑠 → (𝑥 = (𝑦𝑆) ↔ 𝑠 = (𝑦𝑆)))
8786rexbidv 3225 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑠 → (∃𝑦𝑐 𝑥 = (𝑦𝑆) ↔ ∃𝑦𝑐 𝑠 = (𝑦𝑆)))
8885, 87elab 3602 . . . . . . . . . . . . . . 15 (𝑠 ∈ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ↔ ∃𝑦𝑐 𝑠 = (𝑦𝑆))
8988ralbii 3090 . . . . . . . . . . . . . 14 (∀𝑠𝑡 𝑠 ∈ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ↔ ∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆))
9083, 84, 893bitri 296 . . . . . . . . . . . . 13 (𝑡 ∈ 𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ↔ ∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆))
9190anbi1i 623 . . . . . . . . . . . 12 ((𝑡 ∈ 𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∧ 𝑡 ∈ Fin) ↔ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin))
9282, 91bitri 274 . . . . . . . . . . 11 (𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) ↔ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin))
93 ineq1 4136 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑓𝑠) → (𝑦𝑆) = ((𝑓𝑠) ∩ 𝑆))
9493eqeq2d 2749 . . . . . . . . . . . . . . 15 (𝑦 = (𝑓𝑠) → (𝑠 = (𝑦𝑆) ↔ 𝑠 = ((𝑓𝑠) ∩ 𝑆)))
9594ac6sfi 8988 . . . . . . . . . . . . . 14 ((𝑡 ∈ Fin ∧ ∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆)) → ∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)))
9695ancoms 458 . . . . . . . . . . . . 13 ((∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin) → ∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)))
9796adantl 481 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) → ∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)))
98 frn 6591 . . . . . . . . . . . . . . . . . . . . 21 (𝑓:𝑡𝑐 → ran 𝑓𝑐)
9998ad2antrl 724 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → ran 𝑓𝑐)
100 vex 3426 . . . . . . . . . . . . . . . . . . . . . 22 𝑓 ∈ V
101100rnex 7733 . . . . . . . . . . . . . . . . . . . . 21 ran 𝑓 ∈ V
102101elpw 4534 . . . . . . . . . . . . . . . . . . . 20 (ran 𝑓 ∈ 𝒫 𝑐 ↔ ran 𝑓𝑐)
10399, 102sylibr 233 . . . . . . . . . . . . . . . . . . 19 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → ran 𝑓 ∈ 𝒫 𝑐)
104 simprr 769 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) → 𝑡 ∈ Fin)
105104ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → 𝑡 ∈ Fin)
106 ffn 6584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:𝑡𝑐𝑓 Fn 𝑡)
107 dffn4 6678 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 Fn 𝑡𝑓:𝑡onto→ran 𝑓)
108106, 107sylib 217 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:𝑡𝑐𝑓:𝑡onto→ran 𝑓)
109 fodomfi 9022 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 ∈ Fin ∧ 𝑓:𝑡onto→ran 𝑓) → ran 𝑓𝑡)
110108, 109sylan2 592 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ Fin ∧ 𝑓:𝑡𝑐) → ran 𝑓𝑡)
111110adantll 710 . . . . . . . . . . . . . . . . . . . . . 22 (((∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin) ∧ 𝑓:𝑡𝑐) → ran 𝑓𝑡)
112111adantll 710 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑓:𝑡𝑐) → ran 𝑓𝑡)
113112ad2ant2r 743 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → ran 𝑓𝑡)
114 domfi 8935 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ Fin ∧ ran 𝑓𝑡) → ran 𝑓 ∈ Fin)
115105, 113, 114syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → ran 𝑓 ∈ Fin)
116103, 115elind 4124 . . . . . . . . . . . . . . . . . 18 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin))
117 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 = 𝑢𝑠 = 𝑢)
118 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑠 = 𝑢 → (𝑓𝑠) = (𝑓𝑢))
119118ineq1d 4142 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 = 𝑢 → ((𝑓𝑠) ∩ 𝑆) = ((𝑓𝑢) ∩ 𝑆))
120117, 119eqeq12d 2754 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 = 𝑢 → (𝑠 = ((𝑓𝑠) ∩ 𝑆) ↔ 𝑢 = ((𝑓𝑢) ∩ 𝑆)))
121120rspccv 3549 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆) → (𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆)))
122 pm2.27 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑢𝑡 → ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆)) → 𝑢 = ((𝑓𝑢) ∩ 𝑆)))
123 inss1 4159 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓𝑢) ∩ 𝑆) ⊆ (𝑓𝑢)
124 sseq1 3942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑢 = ((𝑓𝑢) ∩ 𝑆) → (𝑢 ⊆ (𝑓𝑢) ↔ ((𝑓𝑢) ∩ 𝑆) ⊆ (𝑓𝑢)))
125123, 124mpbiri 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑢 = ((𝑓𝑢) ∩ 𝑆) → 𝑢 ⊆ (𝑓𝑢))
126 ssel 3910 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑢 ⊆ (𝑓𝑢) → (𝑤𝑢𝑤 ∈ (𝑓𝑢)))
127126a1dd 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑢 ⊆ (𝑓𝑢) → (𝑤𝑢 → (𝑓:𝑡𝑐𝑤 ∈ (𝑓𝑢))))
128125, 127syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑢 = ((𝑓𝑢) ∩ 𝑆) → (𝑤𝑢 → (𝑓:𝑡𝑐𝑤 ∈ (𝑓𝑢))))
129128a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑢𝑡 → (𝑢 = ((𝑓𝑢) ∩ 𝑆) → (𝑤𝑢 → (𝑓:𝑡𝑐𝑤 ∈ (𝑓𝑢)))))
1301293imp 1109 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆) ∧ 𝑤𝑢) → (𝑓:𝑡𝑐𝑤 ∈ (𝑓𝑢)))
131 fnfvelrn 6940 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑓 Fn 𝑡𝑢𝑡) → (𝑓𝑢) ∈ ran 𝑓)
132131expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑢𝑡 → (𝑓 Fn 𝑡 → (𝑓𝑢) ∈ ran 𝑓))
1331323ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆) ∧ 𝑤𝑢) → (𝑓 Fn 𝑡 → (𝑓𝑢) ∈ ran 𝑓))
134106, 133syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆) ∧ 𝑤𝑢) → (𝑓:𝑡𝑐 → (𝑓𝑢) ∈ ran 𝑓))
135130, 134jcad 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆) ∧ 𝑤𝑢) → (𝑓:𝑡𝑐 → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))
1361353exp 1117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑢𝑡 → (𝑢 = ((𝑓𝑢) ∩ 𝑆) → (𝑤𝑢 → (𝑓:𝑡𝑐 → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))))
137122, 136syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑢𝑡 → ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆)) → (𝑤𝑢 → (𝑓:𝑡𝑐 → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))))
138137com3r 87 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤𝑢 → (𝑢𝑡 → ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆)) → (𝑓:𝑡𝑐 → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))))
139138imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑤𝑢𝑢𝑡) → ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆)) → (𝑓:𝑡𝑐 → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓))))
140139com3l 89 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆)) → (𝑓:𝑡𝑐 → ((𝑤𝑢𝑢𝑡) → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓))))
141140impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:𝑡𝑐 ∧ (𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆))) → ((𝑤𝑢𝑢𝑡) → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))
142121, 141sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → ((𝑤𝑢𝑢𝑡) → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))
143 fvex 6769 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓𝑢) ∈ V
144 eleq2 2827 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = (𝑓𝑢) → (𝑤𝑣𝑤 ∈ (𝑓𝑢)))
145 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = (𝑓𝑢) → (𝑣 ∈ ran 𝑓 ↔ (𝑓𝑢) ∈ ran 𝑓))
146144, 145anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = (𝑓𝑢) → ((𝑤𝑣𝑣 ∈ ran 𝑓) ↔ (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))
147143, 146spcev 3535 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓) → ∃𝑣(𝑤𝑣𝑣 ∈ ran 𝑓))
148142, 147syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → ((𝑤𝑢𝑢𝑡) → ∃𝑣(𝑤𝑣𝑣 ∈ ran 𝑓)))
149148exlimdv 1937 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → (∃𝑢(𝑤𝑢𝑢𝑡) → ∃𝑣(𝑤𝑣𝑣 ∈ ran 𝑓)))
150 eluni 4839 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 𝑡 ↔ ∃𝑢(𝑤𝑢𝑢𝑡))
151 eluni 4839 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ran 𝑓 ↔ ∃𝑣(𝑤𝑣𝑣 ∈ ran 𝑓))
152149, 150, 1513imtr4g 295 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → (𝑤 𝑡𝑤 ran 𝑓))
153152ssrdv 3923 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → 𝑡 ran 𝑓)
154153adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → 𝑡 ran 𝑓)
155 sseq1 3942 . . . . . . . . . . . . . . . . . . . 20 (𝑆 = 𝑡 → (𝑆 ran 𝑓 𝑡 ran 𝑓))
156155ad2antlr 723 . . . . . . . . . . . . . . . . . . 19 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → (𝑆 ran 𝑓 𝑡 ran 𝑓))
157154, 156mpbird 256 . . . . . . . . . . . . . . . . . 18 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → 𝑆 ran 𝑓)
158116, 157jca 511 . . . . . . . . . . . . . . . . 17 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → (ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓))
159158ex 412 . . . . . . . . . . . . . . . 16 ((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) → ((𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → (ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓)))
160159eximdv 1921 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) → (∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → ∃𝑓(ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓)))
161160ex 412 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) → (𝑆 = 𝑡 → (∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → ∃𝑓(ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓))))
162161com23 86 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) → (∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → (𝑆 = 𝑡 → ∃𝑓(ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓))))
163 unieq 4847 . . . . . . . . . . . . . . . 16 (𝑑 = ran 𝑓 𝑑 = ran 𝑓)
164163sseq2d 3949 . . . . . . . . . . . . . . 15 (𝑑 = ran 𝑓 → (𝑆 𝑑𝑆 ran 𝑓))
165164rspcev 3552 . . . . . . . . . . . . . 14 ((ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)
166165exlimiv 1934 . . . . . . . . . . . . 13 (∃𝑓(ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)
167162, 166syl8 76 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) → (∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → (𝑆 = 𝑡 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
16897, 167mpd 15 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) → (𝑆 = 𝑡 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑))
16992, 168sylan2b 593 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ 𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)) → (𝑆 = 𝑡 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑))
170169rexlimdva 3212 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)𝑆 = 𝑡 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑))
17181, 170syl5bir 242 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → ((𝑆 = 𝑆 → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)𝑆 = 𝑡) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑))
17279, 171sylbird 259 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑))
173172ex 412 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (𝑆 𝑐 → (( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
174173com23 86 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡) → (𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
17553, 174syld 47 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡) → (𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
176175ralrimdva 3112 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡) → ∀𝑐 ∈ 𝒫 𝐽(𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
1774cmpsublem 22458 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∀𝑐 ∈ 𝒫 𝐽(𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑) → ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)))
178176, 177impbid 211 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡) ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
17913, 178bitrd 278 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530   cuni 4836   ciun 4921   class class class wbr 5070  ran crn 5581   Fn wfn 6413  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255  cdom 8689  Fincfn 8691  t crest 17048  Topctop 21950  Compccmp 22445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-fin 8695  df-fi 9100  df-rest 17050  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446
This theorem is referenced by:  cmpcld  22461  uncmp  22462  hauscmplem  22465  1stckgenlem  22612  icccmp  23894  bndth  24027  ovolicc2  24591  stoweidlem50  43481  stoweidlem57  43488
  Copyright terms: Public domain W3C validator