MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpsub Structured version   Visualization version   GIF version

Theorem cmpsub 23124
Description: Two equivalent ways of describing a compact subset of a topological space. Inspired by Sue E. Goodman's Beginning Topology. (Contributed by Jeff Hankins, 22-Jun-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
cmpsub.1 𝑋 = 𝐽
Assertion
Ref Expression
cmpsub ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
Distinct variable groups:   𝑐,𝑑,𝐽   𝑆,𝑐,𝑑   𝑋,𝑐,𝑑

Proof of Theorem cmpsub
Dummy variables 𝑥 𝑦 𝑓 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . 4 (𝐽t 𝑆) = (𝐽t 𝑆)
21iscmp 23112 . . 3 ((𝐽t 𝑆) ∈ Comp ↔ ((𝐽t 𝑆) ∈ Top ∧ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)))
3 id 22 . . . . . 6 (𝑆𝑋𝑆𝑋)
4 cmpsub.1 . . . . . . 7 𝑋 = 𝐽
54topopn 22628 . . . . . 6 (𝐽 ∈ Top → 𝑋𝐽)
6 ssexg 5323 . . . . . 6 ((𝑆𝑋𝑋𝐽) → 𝑆 ∈ V)
73, 5, 6syl2anr 597 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ V)
8 resttop 22884 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → (𝐽t 𝑆) ∈ Top)
97, 8syldan 591 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐽t 𝑆) ∈ Top)
10 ibar 529 . . . . 5 ((𝐽t 𝑆) ∈ Top → (∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡) ↔ ((𝐽t 𝑆) ∈ Top ∧ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡))))
1110bicomd 222 . . . 4 ((𝐽t 𝑆) ∈ Top → (((𝐽t 𝑆) ∈ Top ∧ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)) ↔ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)))
129, 11syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((𝐽t 𝑆) ∈ Top ∧ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)) ↔ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)))
132, 12bitrid 282 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)))
14 vex 3478 . . . . . . . . . . 11 𝑡 ∈ V
15 eqeq1 2736 . . . . . . . . . . . 12 (𝑥 = 𝑡 → (𝑥 = (𝑦𝑆) ↔ 𝑡 = (𝑦𝑆)))
1615rexbidv 3178 . . . . . . . . . . 11 (𝑥 = 𝑡 → (∃𝑦𝑐 𝑥 = (𝑦𝑆) ↔ ∃𝑦𝑐 𝑡 = (𝑦𝑆)))
1714, 16elab 3668 . . . . . . . . . 10 (𝑡 ∈ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ↔ ∃𝑦𝑐 𝑡 = (𝑦𝑆))
18 velpw 4607 . . . . . . . . . . . . . 14 (𝑐 ∈ 𝒫 𝐽𝑐𝐽)
19 ssel2 3977 . . . . . . . . . . . . . . . 16 ((𝑐𝐽𝑦𝑐) → 𝑦𝐽)
20 ineq1 4205 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑦 → (𝑑𝑆) = (𝑦𝑆))
2120rspceeqv 3633 . . . . . . . . . . . . . . . . 17 ((𝑦𝐽𝑡 = (𝑦𝑆)) → ∃𝑑𝐽 𝑡 = (𝑑𝑆))
2221ex 413 . . . . . . . . . . . . . . . 16 (𝑦𝐽 → (𝑡 = (𝑦𝑆) → ∃𝑑𝐽 𝑡 = (𝑑𝑆)))
2319, 22syl 17 . . . . . . . . . . . . . . 15 ((𝑐𝐽𝑦𝑐) → (𝑡 = (𝑦𝑆) → ∃𝑑𝐽 𝑡 = (𝑑𝑆)))
2423ex 413 . . . . . . . . . . . . . 14 (𝑐𝐽 → (𝑦𝑐 → (𝑡 = (𝑦𝑆) → ∃𝑑𝐽 𝑡 = (𝑑𝑆))))
2518, 24sylbi 216 . . . . . . . . . . . . 13 (𝑐 ∈ 𝒫 𝐽 → (𝑦𝑐 → (𝑡 = (𝑦𝑆) → ∃𝑑𝐽 𝑡 = (𝑑𝑆))))
2625adantl 482 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (𝑦𝑐 → (𝑡 = (𝑦𝑆) → ∃𝑑𝐽 𝑡 = (𝑑𝑆))))
2726rexlimdv 3153 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (∃𝑦𝑐 𝑡 = (𝑦𝑆) → ∃𝑑𝐽 𝑡 = (𝑑𝑆)))
28 simpll 765 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → 𝐽 ∈ Top)
294sseq2i 4011 . . . . . . . . . . . . . 14 (𝑆𝑋𝑆 𝐽)
30 uniexg 7732 . . . . . . . . . . . . . . . 16 (𝐽 ∈ Top → 𝐽 ∈ V)
31 ssexg 5323 . . . . . . . . . . . . . . . 16 ((𝑆 𝐽 𝐽 ∈ V) → 𝑆 ∈ V)
3230, 31sylan2 593 . . . . . . . . . . . . . . 15 ((𝑆 𝐽𝐽 ∈ Top) → 𝑆 ∈ V)
3332ancoms 459 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ∈ V)
3429, 33sylan2b 594 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ V)
3534adantr 481 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → 𝑆 ∈ V)
36 elrest 17377 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → (𝑡 ∈ (𝐽t 𝑆) ↔ ∃𝑑𝐽 𝑡 = (𝑑𝑆)))
3728, 35, 36syl2anc 584 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (𝑡 ∈ (𝐽t 𝑆) ↔ ∃𝑑𝐽 𝑡 = (𝑑𝑆)))
3827, 37sylibrd 258 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (∃𝑦𝑐 𝑡 = (𝑦𝑆) → 𝑡 ∈ (𝐽t 𝑆)))
3917, 38biimtrid 241 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (𝑡 ∈ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → 𝑡 ∈ (𝐽t 𝑆)))
4039ssrdv 3988 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ⊆ (𝐽t 𝑆))
41 vex 3478 . . . . . . . . . 10 𝑐 ∈ V
4241abrexex 7951 . . . . . . . . 9 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∈ V
4342elpw 4606 . . . . . . . 8 ({𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∈ 𝒫 (𝐽t 𝑆) ↔ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ⊆ (𝐽t 𝑆))
4440, 43sylibr 233 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∈ 𝒫 (𝐽t 𝑆))
45 unieq 4919 . . . . . . . . . 10 (𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → 𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)})
4645eqeq2d 2743 . . . . . . . . 9 (𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ( (𝐽t 𝑆) = 𝑠 (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)}))
47 pweq 4616 . . . . . . . . . . 11 (𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → 𝒫 𝑠 = 𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)})
4847ineq1d 4211 . . . . . . . . . 10 (𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → (𝒫 𝑠 ∩ Fin) = (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin))
4948rexeqdv 3326 . . . . . . . . 9 (𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → (∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡 ↔ ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡))
5046, 49imbi12d 344 . . . . . . . 8 (𝑠 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → (( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡) ↔ ( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡)))
5150rspcva 3610 . . . . . . 7 (({𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∈ 𝒫 (𝐽t 𝑆) ∧ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)) → ( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡))
5244, 51sylan 580 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)) → ( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡))
5352ex 413 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡) → ( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡)))
544restuni 22886 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 = (𝐽t 𝑆))
5554ad2antrr 724 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → 𝑆 = (𝐽t 𝑆))
56 vex 3478 . . . . . . . . . . . . . 14 𝑦 ∈ V
5756inex1 5317 . . . . . . . . . . . . 13 (𝑦𝑆) ∈ V
5857dfiun2 5036 . . . . . . . . . . . 12 𝑦𝑐 (𝑦𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)}
59 incom 4201 . . . . . . . . . . . . . 14 (𝑦𝑆) = (𝑆𝑦)
6059a1i 11 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ 𝑦𝑐) → (𝑦𝑆) = (𝑆𝑦))
6160iuneq2dv 5021 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → 𝑦𝑐 (𝑦𝑆) = 𝑦𝑐 (𝑆𝑦))
6258, 61eqtr3id 2786 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} = 𝑦𝑐 (𝑆𝑦))
63 iunin2 5074 . . . . . . . . . . . 12 𝑦𝑐 (𝑆𝑦) = (𝑆 𝑦𝑐 𝑦)
64 uniiun 5061 . . . . . . . . . . . . . . . 16 𝑐 = 𝑦𝑐 𝑦
6564eqcomi 2741 . . . . . . . . . . . . . . 15 𝑦𝑐 𝑦 = 𝑐
6665a1i 11 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → 𝑦𝑐 𝑦 = 𝑐)
6766ineq2d 4212 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (𝑆 𝑦𝑐 𝑦) = (𝑆 𝑐))
68 incom 4201 . . . . . . . . . . . . . . 15 (𝑆 𝑐) = ( 𝑐𝑆)
69 sseqin2 4215 . . . . . . . . . . . . . . . 16 (𝑆 𝑐 ↔ ( 𝑐𝑆) = 𝑆)
7069biimpi 215 . . . . . . . . . . . . . . 15 (𝑆 𝑐 → ( 𝑐𝑆) = 𝑆)
7168, 70eqtrid 2784 . . . . . . . . . . . . . 14 (𝑆 𝑐 → (𝑆 𝑐) = 𝑆)
7271adantl 482 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (𝑆 𝑐) = 𝑆)
7367, 72eqtrd 2772 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (𝑆 𝑦𝑐 𝑦) = 𝑆)
7463, 73eqtrid 2784 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → 𝑦𝑐 (𝑆𝑦) = 𝑆)
7562, 74eqtr2d 2773 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → 𝑆 = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)})
7655, 75eqeq12d 2748 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (𝑆 = 𝑆 (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)}))
7755eqeq1d 2734 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (𝑆 = 𝑡 (𝐽t 𝑆) = 𝑡))
7877rexbidv 3178 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)𝑆 = 𝑡 ↔ ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡))
7976, 78imbi12d 344 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → ((𝑆 = 𝑆 → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)𝑆 = 𝑡) ↔ ( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡)))
80 eqid 2732 . . . . . . . . . 10 𝑆 = 𝑆
8180a1bi 362 . . . . . . . . 9 (∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)𝑆 = 𝑡 ↔ (𝑆 = 𝑆 → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)𝑆 = 𝑡))
82 elin 3964 . . . . . . . . . . . 12 (𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) ↔ (𝑡 ∈ 𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∧ 𝑡 ∈ Fin))
83 velpw 4607 . . . . . . . . . . . . . 14 (𝑡 ∈ 𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ↔ 𝑡 ⊆ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)})
84 dfss3 3970 . . . . . . . . . . . . . 14 (𝑡 ⊆ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ↔ ∀𝑠𝑡 𝑠 ∈ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)})
85 vex 3478 . . . . . . . . . . . . . . . 16 𝑠 ∈ V
86 eqeq1 2736 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑠 → (𝑥 = (𝑦𝑆) ↔ 𝑠 = (𝑦𝑆)))
8786rexbidv 3178 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑠 → (∃𝑦𝑐 𝑥 = (𝑦𝑆) ↔ ∃𝑦𝑐 𝑠 = (𝑦𝑆)))
8885, 87elab 3668 . . . . . . . . . . . . . . 15 (𝑠 ∈ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ↔ ∃𝑦𝑐 𝑠 = (𝑦𝑆))
8988ralbii 3093 . . . . . . . . . . . . . 14 (∀𝑠𝑡 𝑠 ∈ {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ↔ ∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆))
9083, 84, 893bitri 296 . . . . . . . . . . . . 13 (𝑡 ∈ 𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ↔ ∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆))
9190anbi1i 624 . . . . . . . . . . . 12 ((𝑡 ∈ 𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∧ 𝑡 ∈ Fin) ↔ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin))
9282, 91bitri 274 . . . . . . . . . . 11 (𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) ↔ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin))
93 ineq1 4205 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑓𝑠) → (𝑦𝑆) = ((𝑓𝑠) ∩ 𝑆))
9493eqeq2d 2743 . . . . . . . . . . . . . . 15 (𝑦 = (𝑓𝑠) → (𝑠 = (𝑦𝑆) ↔ 𝑠 = ((𝑓𝑠) ∩ 𝑆)))
9594ac6sfi 9289 . . . . . . . . . . . . . 14 ((𝑡 ∈ Fin ∧ ∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆)) → ∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)))
9695ancoms 459 . . . . . . . . . . . . 13 ((∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin) → ∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)))
9796adantl 482 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) → ∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)))
98 frn 6724 . . . . . . . . . . . . . . . . . . . . 21 (𝑓:𝑡𝑐 → ran 𝑓𝑐)
9998ad2antrl 726 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → ran 𝑓𝑐)
100 vex 3478 . . . . . . . . . . . . . . . . . . . . . 22 𝑓 ∈ V
101100rnex 7905 . . . . . . . . . . . . . . . . . . . . 21 ran 𝑓 ∈ V
102101elpw 4606 . . . . . . . . . . . . . . . . . . . 20 (ran 𝑓 ∈ 𝒫 𝑐 ↔ ran 𝑓𝑐)
10399, 102sylibr 233 . . . . . . . . . . . . . . . . . . 19 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → ran 𝑓 ∈ 𝒫 𝑐)
104 simprr 771 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) → 𝑡 ∈ Fin)
105104ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → 𝑡 ∈ Fin)
106 ffn 6717 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓:𝑡𝑐𝑓 Fn 𝑡)
107 dffn4 6811 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 Fn 𝑡𝑓:𝑡onto→ran 𝑓)
108106, 107sylib 217 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:𝑡𝑐𝑓:𝑡onto→ran 𝑓)
109 fodomfi 9327 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 ∈ Fin ∧ 𝑓:𝑡onto→ran 𝑓) → ran 𝑓𝑡)
110108, 109sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ Fin ∧ 𝑓:𝑡𝑐) → ran 𝑓𝑡)
111110adantll 712 . . . . . . . . . . . . . . . . . . . . . 22 (((∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin) ∧ 𝑓:𝑡𝑐) → ran 𝑓𝑡)
112111adantll 712 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑓:𝑡𝑐) → ran 𝑓𝑡)
113112ad2ant2r 745 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → ran 𝑓𝑡)
114 domfi 9194 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ Fin ∧ ran 𝑓𝑡) → ran 𝑓 ∈ Fin)
115105, 113, 114syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → ran 𝑓 ∈ Fin)
116103, 115elind 4194 . . . . . . . . . . . . . . . . . 18 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin))
117 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 = 𝑢𝑠 = 𝑢)
118 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑠 = 𝑢 → (𝑓𝑠) = (𝑓𝑢))
119118ineq1d 4211 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 = 𝑢 → ((𝑓𝑠) ∩ 𝑆) = ((𝑓𝑢) ∩ 𝑆))
120117, 119eqeq12d 2748 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 = 𝑢 → (𝑠 = ((𝑓𝑠) ∩ 𝑆) ↔ 𝑢 = ((𝑓𝑢) ∩ 𝑆)))
121120rspccv 3609 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆) → (𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆)))
122 pm2.27 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑢𝑡 → ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆)) → 𝑢 = ((𝑓𝑢) ∩ 𝑆)))
123 inss1 4228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑓𝑢) ∩ 𝑆) ⊆ (𝑓𝑢)
124 sseq1 4007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑢 = ((𝑓𝑢) ∩ 𝑆) → (𝑢 ⊆ (𝑓𝑢) ↔ ((𝑓𝑢) ∩ 𝑆) ⊆ (𝑓𝑢)))
125123, 124mpbiri 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑢 = ((𝑓𝑢) ∩ 𝑆) → 𝑢 ⊆ (𝑓𝑢))
126 ssel 3975 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑢 ⊆ (𝑓𝑢) → (𝑤𝑢𝑤 ∈ (𝑓𝑢)))
127126a1dd 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑢 ⊆ (𝑓𝑢) → (𝑤𝑢 → (𝑓:𝑡𝑐𝑤 ∈ (𝑓𝑢))))
128125, 127syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑢 = ((𝑓𝑢) ∩ 𝑆) → (𝑤𝑢 → (𝑓:𝑡𝑐𝑤 ∈ (𝑓𝑢))))
129128a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑢𝑡 → (𝑢 = ((𝑓𝑢) ∩ 𝑆) → (𝑤𝑢 → (𝑓:𝑡𝑐𝑤 ∈ (𝑓𝑢)))))
1301293imp 1111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆) ∧ 𝑤𝑢) → (𝑓:𝑡𝑐𝑤 ∈ (𝑓𝑢)))
131 fnfvelrn 7082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑓 Fn 𝑡𝑢𝑡) → (𝑓𝑢) ∈ ran 𝑓)
132131expcom 414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑢𝑡 → (𝑓 Fn 𝑡 → (𝑓𝑢) ∈ ran 𝑓))
1331323ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆) ∧ 𝑤𝑢) → (𝑓 Fn 𝑡 → (𝑓𝑢) ∈ ran 𝑓))
134106, 133syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆) ∧ 𝑤𝑢) → (𝑓:𝑡𝑐 → (𝑓𝑢) ∈ ran 𝑓))
135130, 134jcad 513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆) ∧ 𝑤𝑢) → (𝑓:𝑡𝑐 → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))
1361353exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑢𝑡 → (𝑢 = ((𝑓𝑢) ∩ 𝑆) → (𝑤𝑢 → (𝑓:𝑡𝑐 → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))))
137122, 136syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑢𝑡 → ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆)) → (𝑤𝑢 → (𝑓:𝑡𝑐 → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))))
138137com3r 87 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤𝑢 → (𝑢𝑡 → ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆)) → (𝑓:𝑡𝑐 → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))))
139138imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑤𝑢𝑢𝑡) → ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆)) → (𝑓:𝑡𝑐 → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓))))
140139com3l 89 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆)) → (𝑓:𝑡𝑐 → ((𝑤𝑢𝑢𝑡) → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓))))
141140impcom 408 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:𝑡𝑐 ∧ (𝑢𝑡𝑢 = ((𝑓𝑢) ∩ 𝑆))) → ((𝑤𝑢𝑢𝑡) → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))
142121, 141sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → ((𝑤𝑢𝑢𝑡) → (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))
143 fvex 6904 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓𝑢) ∈ V
144 eleq2 2822 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = (𝑓𝑢) → (𝑤𝑣𝑤 ∈ (𝑓𝑢)))
145 eleq1 2821 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = (𝑓𝑢) → (𝑣 ∈ ran 𝑓 ↔ (𝑓𝑢) ∈ ran 𝑓))
146144, 145anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = (𝑓𝑢) → ((𝑤𝑣𝑣 ∈ ran 𝑓) ↔ (𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓)))
147143, 146spcev 3596 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑤 ∈ (𝑓𝑢) ∧ (𝑓𝑢) ∈ ran 𝑓) → ∃𝑣(𝑤𝑣𝑣 ∈ ran 𝑓))
148142, 147syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → ((𝑤𝑢𝑢𝑡) → ∃𝑣(𝑤𝑣𝑣 ∈ ran 𝑓)))
149148exlimdv 1936 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → (∃𝑢(𝑤𝑢𝑢𝑡) → ∃𝑣(𝑤𝑣𝑣 ∈ ran 𝑓)))
150 eluni 4911 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 𝑡 ↔ ∃𝑢(𝑤𝑢𝑢𝑡))
151 eluni 4911 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ran 𝑓 ↔ ∃𝑣(𝑤𝑣𝑣 ∈ ran 𝑓))
152149, 150, 1513imtr4g 295 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → (𝑤 𝑡𝑤 ran 𝑓))
153152ssrdv 3988 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → 𝑡 ran 𝑓)
154153adantl 482 . . . . . . . . . . . . . . . . . . 19 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → 𝑡 ran 𝑓)
155 sseq1 4007 . . . . . . . . . . . . . . . . . . . 20 (𝑆 = 𝑡 → (𝑆 ran 𝑓 𝑡 ran 𝑓))
156155ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → (𝑆 ran 𝑓 𝑡 ran 𝑓))
157154, 156mpbird 256 . . . . . . . . . . . . . . . . . 18 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → 𝑆 ran 𝑓)
158116, 157jca 512 . . . . . . . . . . . . . . . . 17 (((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) ∧ (𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆))) → (ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓))
159158ex 413 . . . . . . . . . . . . . . . 16 ((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) → ((𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → (ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓)))
160159eximdv 1920 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) ∧ 𝑆 = 𝑡) → (∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → ∃𝑓(ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓)))
161160ex 413 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) → (𝑆 = 𝑡 → (∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → ∃𝑓(ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓))))
162161com23 86 . . . . . . . . . . . . 13 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) → (∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → (𝑆 = 𝑡 → ∃𝑓(ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓))))
163 unieq 4919 . . . . . . . . . . . . . . . 16 (𝑑 = ran 𝑓 𝑑 = ran 𝑓)
164163sseq2d 4014 . . . . . . . . . . . . . . 15 (𝑑 = ran 𝑓 → (𝑆 𝑑𝑆 ran 𝑓))
165164rspcev 3612 . . . . . . . . . . . . . 14 ((ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)
166165exlimiv 1933 . . . . . . . . . . . . 13 (∃𝑓(ran 𝑓 ∈ (𝒫 𝑐 ∩ Fin) ∧ 𝑆 ran 𝑓) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)
167162, 166syl8 76 . . . . . . . . . . . 12 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) → (∃𝑓(𝑓:𝑡𝑐 ∧ ∀𝑠𝑡 𝑠 = ((𝑓𝑠) ∩ 𝑆)) → (𝑆 = 𝑡 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
16897, 167mpd 15 . . . . . . . . . . 11 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ (∀𝑠𝑡𝑦𝑐 𝑠 = (𝑦𝑆) ∧ 𝑡 ∈ Fin)) → (𝑆 = 𝑡 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑))
16992, 168sylan2b 594 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) ∧ 𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)) → (𝑆 = 𝑡 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑))
170169rexlimdva 3155 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)𝑆 = 𝑡 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑))
17181, 170biimtrrid 242 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → ((𝑆 = 𝑆 → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin)𝑆 = 𝑡) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑))
17279, 171sylbird 259 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) ∧ 𝑆 𝑐) → (( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑))
173172ex 413 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (𝑆 𝑐 → (( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡) → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
174173com23 86 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (( (𝐽t 𝑆) = {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} → ∃𝑡 ∈ (𝒫 {𝑥 ∣ ∃𝑦𝑐 𝑥 = (𝑦𝑆)} ∩ Fin) (𝐽t 𝑆) = 𝑡) → (𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
17553, 174syld 47 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑐 ∈ 𝒫 𝐽) → (∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡) → (𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
176175ralrimdva 3154 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡) → ∀𝑐 ∈ 𝒫 𝐽(𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
1774cmpsublem 23123 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∀𝑐 ∈ 𝒫 𝐽(𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑) → ∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡)))
178176, 177impbid 211 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∀𝑠 ∈ 𝒫 (𝐽t 𝑆)( (𝐽t 𝑆) = 𝑠 → ∃𝑡 ∈ (𝒫 𝑠 ∩ Fin) (𝐽t 𝑆) = 𝑡) ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
17913, 178bitrd 278 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑆 𝑐 → ∃𝑑 ∈ (𝒫 𝑐 ∩ Fin)𝑆 𝑑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2709  wral 3061  wrex 3070  Vcvv 3474  cin 3947  wss 3948  𝒫 cpw 4602   cuni 4908   ciun 4997   class class class wbr 5148  ran crn 5677   Fn wfn 6538  wf 6539  ontowfo 6541  cfv 6543  (class class class)co 7411  cdom 8939  Fincfn 8941  t crest 17370  Topctop 22615  Compccmp 23110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-fin 8945  df-fi 9408  df-rest 17372  df-topgen 17393  df-top 22616  df-topon 22633  df-bases 22669  df-cmp 23111
This theorem is referenced by:  cmpcld  23126  uncmp  23127  hauscmplem  23130  1stckgenlem  23277  icccmp  24561  bndth  24698  ovolicc2  25263  stoweidlem50  45065  stoweidlem57  45072
  Copyright terms: Public domain W3C validator